首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Capillary zone electrophoresis (CZE) has been employed to characterize nanometer-sized thiolated α-cyclodextrin-capped gold nanoparticles (α-CD-S-AuNPs). The addition of tetrabutylammonium (Bu4N+) ions to the run buffer greatly narrows the migration peak of α-CD-S-AuNP. The optimal run buffer was determined to be 10 mM Bu4N+ in 30 mM phosphate buffer at pH 12 and an applied voltage of 15 kV. The effect of various tetraalkylammonium ions on the peak width and electrophoretic mobility (μe) of α-CD-S-AuNP was studied in detail. Bu4N+ ions assist in inter-linking the α-CD-S-AuNPs and narrowing the migration peak in CZE. This observation can be explained by the fact that each Bu4N+ ion can simultaneously interact with several hydrophobic cavities of the surface-attached α-CDs on AuNPs. The TEM images show that α-CD-S-AuNPs with Bu4N+ are linked together but in the absence of Bu4N+, they are more dispersed. The migration mechanism in CZE is based on the formation of inclusion complexes between Bu4N+ and α-CD-S-AuNPs which induces changes in the charge-to-size ratio of α-CD-S-AuNPs and μe. An inverse linear relationship (r2 > 0.998) exists between the μe and size of α-CD-S-AuNPs in the core range 1.4–4.1 nm. The CZE analyses are rapid with migration time less than 4 min. A few nanoliters of each of the α-CD-S-AuNP samples were injected hydrodynamically at 0.5 psi for 5 s. Our work confirms that CZE is an efficient tool for characterizing the sizes of α-CD-S-AuNPs using Bu4N+ ions.  相似文献   

2.
Vanadium–glucose xerogels (C6H12O6)xV2O5·nH2O with different amounts of glucose (x = 0; 0.3 and 0.5) have been synthesized by sol–gel method. The scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) methods were used to investigate the morphology and composition of obtained xerogels. SEM results show that after intercalation of the glucose molecules the surface structure became more spongy and porously. XPS analysis show that the increasing of glucose concentration in the compounds the reduction ratio of vanadium ions increases. The oxygen ions in the synthesized vanadium–glucose xerogels are bounded to the vanadium ions, carbon ions are involved in a chemical bounding in the hydroxyl group. The determined carbon ions chemical bonds are characteristic for glucose (C–C, CH–OH and C–O bonds). Some of the oxygen ions in the pure vanadium pentoxide xerogels are bonded in water molecules. This fact and the absence of the oxygen component which corresponds to the water in glucose-vanadium xerogels indicate that glucose molecules displaced structural water in vanadium hydrate and are intercalated between the vanadium–oxygen layers.  相似文献   

3.
The structures of σ-radical cations formed by ionization of adamantane, twistane, noradamantane, cubane, 2,4-dehydroadamantane, and protoadamantane were optimized at the B3LYP, B3LYP-D, M06-2X, B3PW91, and MP2 levels of theory using 6-31G(d), 6-311+G(d,p), 6-311+G(3df,2p), cc-PVDZ, and cc-PVTZ basis sets. On the whole, single-configuration approximations consistently describe the structure and transformations of the examined σ-radical cations. The best correlations (r = 0.97–0.98) between the calculated adiabatic ionization potentials and experimental oxidation (anodic) potentials of hydrocarbons were obtained in terms of B3PW91 approximation.  相似文献   

4.
The two-photon absorption (TPA) properties of four TPEB [tetrakis(phenylethynyl)benzene] derivatives (TD, para, ortho, and meta) with different donor/acceptor substitution patterns have been investigated experimentally by the femtosecond open-aperture Z-scan method and theoretically by the time-dependent density-functional theory (TDDFT) method. The four compounds show relatively large TPA cross sections, and the all-donor substituted species (TD) displays the largest TPA cross-section σ(2) = 520 ± 30 GM. On the basis of the calculated electronic structure, TD shows no TPA band in the lower energy region of the spectrum because the transition density is concentrated on particular transitions due to the high symmetry of the molecular structure. The centrosymmetric donor-acceptor TPEB para shows excitations resulting from transitions centered on D-π-D and A-π-A moieties, as well as transition between the D-π-D and A-π-A moieties; this accounts for the broad nature of the TPA bands for this compound. Calculations for two noncentrosymmetric TPEBs (ortho and meta) reveal that the diminished TPA intensities of higher-energy bands result from destructive interference between the dipolar and three-state terms. The molecular orbitals (MOs) of the TPEBs are derivable with linear combinations of the MOs of the two crossing BPEB [bis(phenylethynyl)benzene] derivatives. Overall, the characteristics of the experimental spectra are well-described based on the theoretical analysis.  相似文献   

5.
Rare earth complexes with 2,2′-biphenyldicarboxylic acid (diphenic acid = H2dpa) were obtained as hydrated precipitates of the general formula Ln2(C14H8O4)3nH2O, where n = 3 for the of Y(III) and Ce(III)–Er(III) and n = 6 for La(III), Tm(III), Yb(III) and Lu(III) complexes. On heating in air atmosphere complexes lose all water molecules in the temperature range 30–210 °C in one step and form anhydrous compounds, which are stable up to 315–370 °C. During further heating they decompose to oxides. The trihydrated compounds are crystalline powders whereas the hexahydrated are amorphous solids. The trihydrated complexes crystallize in the monoclinic (Pr(III) and Ce(III) complexes) and triclinic (Y(III) and Nd(III)–Er(III) complexes) crystal systems.  相似文献   

6.
Ionic fullerides of C 60 ? and C 60 2? with the silicon phthalocyanines cations were obtained in the reaction of PcSi(OH)2 with fullerene C60 in the presence of KOH in DMSO or in xylene and THF with the addition of 15C5 crown ether. The fullerides were characterized by electron absorption, 1H NMR and electron spin resonance spectra, and their reaction with O2 and CF3COOH were carried out.  相似文献   

7.
The structural properties of μ2-bridged porphyrinic double-decker complexes are investigated and the influence of various ligands, metals, substituents, and bridging atoms on the dominant structural motif is elucidated. A variety of quantum chemical methods including semiempirical (SQM) methods and density functional theory (DFT) is assessed for the calculation of ecliptic and staggered conformational energies. Local coupled cluster (DLPNO-CCSD(T1)) data are generated for reference. The r2SCAN-3c composite scheme as well as the B2PLYP-D4/def2-QZVPP approach are identified as reliable methods. Energy decomposition analyses (EDA) and localized molecular orbital analyses (LMO) are used to investigate the bonding situation and the nature of the inter-ligand interaction energy underlining the crucial role of attractive London dispersion interactions. Targeted modification of the bridging atom, e.g., by replacing O2− by S2− is shown to drastically change the major structural features of the investigated complexes. Further, the influence of different substituents of varying size at the phthalocyanine ligand regarding the dominant conformation is described.  相似文献   

8.
This paper presents synthesis, structural characterization and spintronic applications of copper (II) tetradecanoate derived magnetic complexes. The complexes were prepared by a chemical reaction between [Cu2(CH3(CH2)12COO)4](EtOH)2 and 2,2′-bipyridine-4,4′-bipyridine ligands respectively. The complexes were further reacted between the product of the first reaction and 4,4′-bipyridine-2,2′-bipyridine respectively. The structural characterization techniques included elemental analysis, Fourier transformed infrared spectroscopy (FTIR), Ultra-violet–Visible (UV–Vis) spectroscopy, polarized optical microscopy, magnetic moment and thermogravimetric analysis. The structural and characterization results suggested that the synthesized complexes were binuclear and mononuclear covalent complexes of copper(II) with structural formulas [Cu22-(OOCR)4](4,4′-bpy)2H2O] and [Cu(η1-(OOCR)2(2,2′-bpy) (4,4′-bpy)] respectively.  相似文献   

9.
A growing body of evidence indicated that the G protein coupled receptors exist as homo- or hetero-dimers in the living cell. The heterodimerization between μ and δ opioid receptors has attracted researchers’ particular interests, it is reported to display novel pharmacological and signalling regulation properties. In this study, we construct the full-length 3D-model of μ and δ opioid receptors using the homology modelling method. Threading program was used to predict the possible templates for the N- and C-terminus domains. Then, a 30 ns molecular dynamics simulations was performed with each receptor embedded in an explicit membrane-water environment to refine and explore the conformational space. Based on the structures extracted from the molecular dynamics, the likely interface of μ–δ heterodimer was investigated through the analysis of protein–protein docking, cluster, shape complementary and interaction energy. The computational modelling works revealed that the most likely interface of heterodimer was formed between the transmembrane1,7 (TM1,7) domains of μ receptor and the TM(4,5) domains of δ receptor, with emphasis on μ-TM1 and δ-TM4, the next likely interface was μ(TM6,7)-δ(TM4,5), with emphasis on μ-TM6 and δ-TM4. Our results were consistent with previous reports. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
The polymerization of aniline in the presence of poly(4-styrenesulfonic acid) and poly(2-acryla-mido-2-methyl-1-propanesulfonic acid) results in interpolyelectrolyte complexes with a composition and a dispersion stability depending on the aniline-to-polyanion ratio in the initial reaction mixture. As opposed to polymerization mediated by poly(4-styrenesulfonic acid), the template polymerization of aniline conducted in the presence of poly(2-acrylamido-2-methyl-1-propanesulfonic acid) leads to the structural template effect that manifests itself as the formation of polyaniline containing 1,2- and 1,4-substituted benzene rings. It is found that the electron conductivity of the polyaniline-polyanion interpolyelectrolyte complexes depends not only on the content but also on the nature of the used polyacid and proves to be higher in the case of stoichiometric interpolyelectrolyte complexes formed in the presence of poly(4-styrenesulfonic acid).  相似文献   

11.
Two new cobalt(III)-chelates, trans-bis(methyl-ethyl-dioximato)-chloro-β-picoline-cobalt (III) (1), and trans-bis(methyl-ethyl-dioximato)-chloro-3,4-lutidine-cobalt (III) (2) were obtained by oxidizing a mixture of CoCl2, methyl-ethyl-dioxime and amines: β-picoline (3-methyl-pyridine) for (1) and 3,4-lutidine (3,4-dimethyl-pyridine) for (2). The crystal structure of (1) was determined by single crystal XRD (monoclinic, space group P21/c (No. 14) with a = 8.391(3) Å, b = 14.421(5) Å, c = 18.383(8) Å, β = 114.57(2)°, R = 0.0499), while both (1) and (2) were studied by middle and far FTIR spectroscopy, electrospray ionization (ESI) MS, powder XRD and thermal analysis (TG/DTA-MS). Melting of the related complexes 1 and 2 at 219 and 184 °C, respectively, results in an immediate chemical degradation of their whole structure and tarring of ligands.  相似文献   

12.
A new type of chiral matrix based on silver–thiocholesterol hybrid nanosystems adsorbed on silica gel has been proposed. The molar ratio of stabilized thiocholesterol (L) ligand and silver (Ag) was found to have little effect on the size of the resulting silver nanoparticles (SNPs). The average diameter of SNPs was 2.7 ± 0.4, 2.2 ± 0.4, and 2.1 ± 0.6 nm upon the ratios Ag: L = 1: 5, Ag: L = 1: 2, and Ag: L = 1: 0.5, respectively. The resulting chiral matrices possess enantioselectivity relative to the 1,1’-binaphthyl-2,2’-diamine (BNDA) and trifluoroanthranyl ethanol (TFAE) optical isomers. The TFAE optical isomers were successfully separated using thin layer chromatography (α = 1.56).  相似文献   

13.
Flavonoids are a large group of ubiquitous molecules synthesized by plants. These molecules possess antioxidant activities which prevent free radical damage to biological molecules and can also be metal chelators. This article describes the synthesis of a Pb(II)–quercetin complex and characterization by UV–visible, infrared, 1H nuclear magnetic resonance spectroscopy, thermogravimetric analysis, and differential thermal analysis. The formation of quercetin and Pb(II) complex ratio 1?:?1 was confirmed by UV–visible spectroscopy. The composition of the complex does not change with pH. Antimicrobial activities were evaluated by using Gram-positive and Gram-negative bacteria. The antioxidant properties of quercetin and the complex was evaluated by using 2,2′-diphenyl-1-picrylhydrazyl radical scavenging method. The quercetin–Pb complex was less effective than quercetin in antimicrobial and antioxidant activity.  相似文献   

14.
The physicochemical properties and structure of moxifloxacin?methyl-β-cyclodextrin complex have been studied by UV spectroscopy, FTIR spectroscopy, and computer simulation. The optimal conditions for the formation of the complex have been determined, and the dissociation constant of the complex in acidic media (K dis = (5.0 ± 0.3) × 10–5 М) has been obtained. It has been found that complexation significantly slows down the release of the drug in acidic media. Experimental results are in good agreement with computer simulation data. The following mechanism of complex formation has been proposed: the incorporation of the aromatic fragment of moxifloxacin into the cavity of methyl-β-cyclodextrin is followed by additional stabilization of the complex via multiple hydrophobic interactions and hydrogen bonding.  相似文献   

15.
16.
17.
18.
Experimentally and theoretically were studied the physical properties of 19 new Schiff’s bases and their different protonated forms, depending on reaction conditions. It was elucidated the correlation between the type of molecular architecture, substituents and pH of the medium on first hyperpolarizability (β) with regard to the potential application of these compounds as organic nonlinear optical materials. The structure and optical properties were also studied, comparing quantum chemical data and experimental results from the mass spectrometry, electronic absorption, diffuse reflectance, and fluorescence spectroscopy, vibrational spectroscopy in condense phase, nuclear magnetic resonance, as well as thermal methods.  相似文献   

19.
The thermal decomposition of Nafion has been studied by means of high-resolution and constant heating rate thermogravimetry (TG), under nitrogen and synthetic air atmospheres. Nafion membranes have been studied in acid and salt (alkali chlorides) forms. The TG curves of Nafion with alkali countercations show similar profiles, whichever the atmosphere employed. The kinetics of thermal decomposition of the Nafion-Cs+ has also been studied. The method employed to calculate the kinetic parameters and to estimate the polymer lifetime from the data was based on Kissinger's method. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
Ab initio study of the transition-metal carbene cations   总被引:3,自引:0,他引:3  
The geometries and bonding characteristics of the first-row transition-metal carbene cations MCH_2~ were investigated by ab initio molecular orbital theory (HF/LANL2DZ). All of MCH_2~ are coplanar. In the closed shell structures the C bonds to M with double bonds; while in the open shell structures the partial double bonds are formed, because one of the σ and π orbitals is singly occupied. It is mainly the π-type overlap between the 2p_x orbital of C and 4p_x, 3d_(xz), orbitals of M~ that forms the π orbitals. The dissociation energies of C—M bond appear in periodic trend from Sc to Cu. Most of the calculated bond dissociation energies are close to the experimental ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号