共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthesis and X‐ray Crystal Structures of Zinc Dichloride Complexes Supported by a β‐Diimine Ligand 下载免费PDF全文
Christoph Scheiper Dominik Naglav Dieter Bläser Christoph Wölper Stephan Schulz 《无机化学与普通化学杂志》2015,641(5):871-875
β‐Diimine zinc dichloride complexes [CH2{C(Me)NAr}2]ZnCl2 [Ar = Mes ( 1 ), Dipp ( 2 )] were obtained from the reactions of ZnCl2 with the corresponding β‐iminoamines [ArN(H)C(Me)CHC(Me)NAr]. Complexes 1 and 2 were characterized by multinuclear NMR (1H, 13C) and IR spectroscopy, elemental analyses as well as by single‐crystal X‐ray diffraction. The energy differences between the enamine‐imine tautomers of the β‐iminoamines were quantified by quantum chemical calculations. 相似文献
2.
The reaction of palladium(II) bromide or palladium(II) iodide with the respective gallium(III) halogenide in the presence of aromatic solvents leads to the formation of palladium(II) tetrabromo— and tetraiodogallate. The compounds are isostructural {monoclinic, C2/m, Pd[GaBr4]2: a = 1267(2), b = 808(1), c = 722(1) pm, β = 94.5(1)°; Pd[GaI4]2: a = 1363(1), b = 849.9(4), c = 756.6(7) pm, β = 95.38(3)°}. The structures contain mononuclear complexes Pd[GaX4]2, where X— = Br— ( 1 ), I— ( 2 ). The crystal structures of 1 and 2 were determined by single‐crystal X‐ray diffraction. Crystals of both compounds turned out to be similarly twinned. 相似文献
3.
Reaction of PdCl2(CH3CN)2 with the sodium salt of 5‐mercapto‐1‐methyltetrazole (MetzSNa) in methanol solution affords an interesting dinuclear palladium complex [Pd2(MetzS)4 ] ( 1 ). However, treatment of PdCl2(CH3CN)2 with neutral MetzSH ligand in methanol solution produces a mononuclear palladium complex [Pd(MetzSH)4]Cl2 ( 2 ). Both complexes were characterized by IR, 1HNMR, UV‐Vis spectroscopy as well as X‐ray crystallography. Single‐crystal X‐ray diffraction analyses of two complexes lead to the elucidation of the structures and show that 1 possesses an asymmetric structure: one Pd atom is tetracoordinated by three sulfur atoms and one nitrogen atom to form PdS3N coordination sphere, the other Pd atom is tetracoordinated by three nitrogen atoms and one sulfur atom to form PdSN3 coordination sphere. The molecules of 1 are associated to 1‐D infinite linear chain by weak intermolecular Pd···S contacts in the crystal lattice. In 2 , the Pd atom lies on an inversion center and has a square‐planar coordination involving the S atoms from four MetzSH ligands. The two chloride ions are not involved in coordination, but are engaged in hydrogen bonding. 相似文献
4.
Mitra Ghassemzadeh Majid M. Heravi Dr. Leyla Fallahnedjad Bernhard Neumüller 《无机化学与普通化学杂志》2008,634(2):352-356
The reaction of of 4‐amino‐5‐ethyl‐2H‐1,2,4‐triazole‐3(4H)‐thione (AETT, L ) with furfural in methanol led to the corresponding Schiff‐Base ( L1 ). The reaction of L1 with [Cu(PPh3)2]Cl in methanol gave to the neutral compound [( L1 )Cu(PPh3)2Cl] ( 1 ). By recrystallization of 1 from CH3CN the complex [( L1 )Cu(PPh3)2Cl]·CH3CN ( 1a ) was obtained. All compounds were characterized by infrared spectroscopy, elemental analyses as well as by X‐ray diffraction studies. Crystal data for L1 at ?80 °C: space group with a = 788.4(1), b = 830.3(2), c = 928.8(2) pm, α = 84.53(1)°, β = 65.93(1)°, γ = 72.02(1)°, Z = 2, R1 = 0.0323; for 1 at ?100 °C: space group with a = 1166.3(1), b = 1423.8(2), c = 1489.1(2) pm, α = 62.15(1)°, β = 72.04(1)°, γ = 88.82(1)°, Z = 2, R1 = 0.0338 and for 1a at ?100 °C: space group P21/c with a = 1294.1(1), b = 1019.8(2), c = 3316.9(4) pm, β = 94.73(1)°, Z = 4, R1 = 0.0435. 相似文献
5.
Mitra Ghassemzadeh Masoomeh Tabatabaee Samaneh Soleimani Bernhard Neumüller 《无机化学与普通化学杂志》2005,631(10):1871-1876
The reaction of 4‐amino‐5‐methyl‐2H‐1,2,4‐triazole‐3(4H)‐thione (AMTT, 1 ) with 4‐methoxy benzaldehyde and 3‐methoxybenzaldehyde in methanol led to the iminic derivatives 4‐(4‐methoxybenzylideneamino)‐5‐methyl‐2H‐1,2,4‐triazole‐3(4H)thione ( 2 , L1) and 4‐(3‐methoxybenzylideneamino)‐5‐methyl‐2H‐1,2,4‐triazole‐3(4H)‐thione ( 3 , L2). The reaction of the latter with [(PPh3)2CuCl] in methanol solution gave the first CuI complex of 3 , [(PPh3)2CuCl(L2)] ( 4 ) and in chloroform solution the complex [(PPh3)2CuCl(L2)]·2CHCl3 ( 5 ). All compounds were characterized by infrared spectroscopy, elemental analyses as well as by X‐ray diffraction studies. Crystal data for 2 at ?80 °C: space group P21/c with a = 1351.3(3), b = 399.4(1), c = 2225.2(5) pm, β = 96.50(2)°, Z = 4, R1 = 0.0667, for 3 at ?80 °C: space group R3c with a = b = 3020.4(2), c = 708.2(1) pm, Z = 18, R1 = 0.0435, for 4 at ?80 °C: space group P21/c with a = 1427.8(1), b = 1129.0(1), c = 2622.8(2) pm, β = 97.19(1)°, Z = 4, R1 = 0.0517 and for 5 at ?80 °C: space group with a = 1280.5(1), b = 1316.1(1), c = 1731.4(1) pm, α = 78.14(1)°, β = 86.06(1)°, γ = 64.69(1)°, Z = 2, R1 = 0.0525. 相似文献
6.
Masoumeh Tabatabaee Dr. Mitra Ghassemzadeh Ali Sadeghi Mahmoud Shahriary Bernhard Neumüller Alexander Rothenberger 《无机化学与普通化学杂志》2009,635(1):120-124
The reaction of 4‐amino‐5‐methyl‐2H‐1,2,4‐triazole‐3(4H)‐thione (AMTT) with 4‐methylbenzaldehyde and 4‐methoxybenzaldehyde in ethanol led to the iminic derivatives ‐4‐(4‐methylbenzylideneamino)‐5‐methyl‐2H‐1,2,4‐triazole‐3(4H)thione ( L1 ) and 4‐(4‐methoxybenzyl‐ideneamino)‐5‐methyl‐2H‐1,2,4‐triazole‐3(4H)‐thione ( L2 ). The reaction of L1 with CuCl in the presence of triphenylphosphane as co‐ligand in methanol/chloroform solution gave the CuI complex containing L1 , [Cu( L1 )(PPh3)2Cl]·0.5CH3OH·0.25CHCl3 ( 1 ). Treatment of L2 with the same metal salt in a molar ratio of 1:1 in methanol and further addition of a solution of PPh3 in chloroform led to the complex [Cu( L2 )(PPh3)2Cl]·2.5CHCl3 ( 2 ). The complexes and L1 were characterized by IR and NMR spectroscopy as well as by X‐ray diffraction studies. In both complexes, the Schiff base ligand is coordinated to the copper ion through its sulfur atom. The other coordination sites around the copper ion are occupied by two triphenylphosphane molecules and one chloride ion. Therefore, each CuI ion is in a distorted tetrahedral environment. Crystal data for L1 at ?100 °C: space group P21/n with a = 720.5(1), b = 1140.6(1), c = 1426.3(2) pm, β = 91.25(1)°, Z = 4, R1 = 0.03, for 1 at ?120 °C : space group with a = 1286.3(1), b = 1740.3(1), c = 2060.2(1) pm, α = 79.085(6), β = 83.827(5), γ = 76.688(6)°, Z = 4, R1 = 0.0649 and for 2 at ?80 °C : space group with a = 1183.7(2), b = 1370.1(2), c = 1812.1(3) pm, α = 85.69(2), β = 88.52(2), γ = 64.89(2)°, Z = 2, R1 = 0.0488. 相似文献
7.
Glen B. Deacon Craig M. Forsyth Dominique M. M. Freckmann Dominique M. M. Freckmann Gerd Meyer Dirk Stellfeldt 《无机化学与普通化学杂志》2000,626(2):540-546
The X‐ray crystal structures of Hg(C6F4X‐p)2 (X = NH2, OMe, or Me) show the compounds to have almost linear C–Hg–C stereochemistry (X = NH2, 176.3(4)°; X = OMe, 179.5(2)°; X = Me, 176.3(2)°), and the two tetrafluoroaryl rings rotated ca. 52–62° with respect to each other. Substantial conjugation of NH2 and OMe groups with the aromatic rings is evident from N–C and O–C(Ar) distances. For X = NH2 or OMe, two weak N(O)–Hg coordination interactions per mercury lead to a two dimensional supramolecular chain structure containing pairs of π‐stacked aromatic rings at near van der Waals contact distances rotated at 62.2° (X = NH2) or 52.9° (X = OMe) to each other. In Hg(C6F4Me‐p)2, which does not have potential donor atoms, no supramolecular structure is obtained, the molecules being laterally displaced from one another. 相似文献
8.
《无机化学与普通化学杂志》2018,644(12-13):590-597
α‐Iminopyridine (α‐IP) is an important redox‐noninnocent ligand. The substituents on the imino function of α‐IPs have important impact on the reaction selectivity with diethylzinc. For the α‐IPs with a hydrogen substituent on the imino carbon, reduction occurred for the non‐bulky N‐substituents phenyl and 2‐methylphenyl groups, whereas alkyl addition and coupling reactions can be selectively achieved for the sterically bulky N‐substituents 2,6‐dimethylphenyl or 2,4,6‐trimethylphenyl group. However, for the α‐IPs with a CH3 substituent on the imino carbon, the deprotonation reaction happened regardless of the N‐substituents of 2‐methylphenyl or 2,6‐dimethylphenyl group. All the products were isolated and characterized by single‐crystal X‐ray diffraction. The possible mechanisms of these reactions were also discussed. 相似文献
9.
Stephan Schulz Prof. Dr. Tamara Eisenmann Ulrich Westphal Sarah Schmidt Ulrich Flörke 《无机化学与普通化学杂志》2009,635(2):216-220
The monomeric β‐diketiminate zinc complex (Mes)NacNacZnMe 1 (MesNacNac = {[2,6‐(2,4,6‐Me3‐C6H2)N(Me)C)]2CH}) was obtained in almost quantitative yield from the reaction of ZnMe2 with (Mes)NacNacH. Reaction of 1 with either Me3NHCl or a solution of HCl in Et2O yielded (Mes)NacNacZnCl 2 , whereas (Mes)NacNacZnI 3 was obtained from the reaction of 1 with I2. 1 – 3 were characterized by elemental analyses, mass and multinuclear (1H, 13C{1H}) NMR spectroscopy, 3·THF also by single crystal X‐ray analysis. 相似文献
10.
《无机化学与普通化学杂志》2018,644(2):114-120
Alkane elimination reactions of the tethered bis(urea) proligand 1,4‐(tBuNHCONH)2‐C4H8 ( 1 ) with ZnR2 (R = Me, Et, nPr) yielded trimetallic zinc complexes [RZn‐1,4‐(tBuNHCON)2‐C4H8]2Zn [R = Me ( 2 ), Et ( 3 ), and nPr ( 4 )]. 2 – 4 were characterized by heteronuclear NMR (1H, 13C) and IR spectroscopy, elemental analysis, and single‐crystal X‐ray diffraction. 相似文献
11.
Carla Carfagna Giuseppe Gatti Luca Mosca Paola Paoli Annalisa Guerri 《Helvetica chimica acta》2006,89(8):1660-1671
The migratory insertions of cis or trans olefins CH(X)?CH(Me) (X = Ph, Br, or Et) into the metal–acyl bond of the complex [Pd(Me)(CO)(iPr2dab)]+ [B{3,5‐(CF3)2C6H3}4]? ( 1 ) (iPr2dab = 1,4‐diisopropyl‐1,4‐diazabuta‐1,3‐diene = N,N′‐(ethane‐1,2‐diylidene)bis[1‐methylethanamine]) are described (Scheme 1). The resulting five‐membered palladacycles were characterized by NMR spectroscopy and X‐ray analysis. Experimental data reveal some important aspects concerning the regio‐ and stereochemistry of the insertion process. In particular, the presence of a Ph or Br substituent at the alkene leads to the formation of highly regiospecific products. Moreover, in all cases, the geometry of the substituents in the formed palladacycle was the same as in the starting olefin, as a consequence of a cis addition of the Pd–acyl fragment to the C?C bond. Reaction with CO and MeOH of the five‐membered complex derived from trans‐β‐methylstyrene (= [(1E)‐prop‐1‐enyl]benzene) insertion, yielded the 2,3‐substituted γ‐keto ester 9 with an (2RS,3SR)‐configuration (Scheme 3). 相似文献
12.
Veysel T. Yilmaz Turan K. Yazicilar Omer Andac Halil Kutuk Yunus Bekdemir William T. A. Harrison 《无机化学与普通化学杂志》2002,628(8):1908-1912
The reaction of sodium benzoxasulfamate (nbs) with cadmium(II) and mercury(II) sulfate in aqueous solution yield the novel complexes [Cd(nbs)2(H2O)4] (1) and [Hg(nbs)2(H2O)3] ( 2 ), respectively. The complexes were characterized by elemental analyses, IR spectroscopy and X‐ray crystallography. Complex 1 is monomeric and has an octahedral arrangement in which the N‐donor nbs ligands occupy the axial positions, while the water oxygen atoms form the equatorial plane. Complex 2 is polymeric and shows a pentagonal bipyramidal arrangement achieved by the bridging of the HgN2O3 units through the weak interaction of the O atoms of the nitro group. The nbs ligands also occupy the axial positions of the pentagonal bipyramid, whereas three water and two nitro oxygen atoms constitute the pentagonal plane. The crystal structure packing in both crystals is achieved by the intermolecular hydrogen bonds involving water hydrogen atoms, nitro and sulfonyl oxygen atoms. 相似文献
13.
MavroudisA. Demertzis ParasNath Yadav Dimitra Kovala‐Demertzi 《Helvetica chimica acta》2006,89(9):1959-1970
Two novel, stable PdII complexes, compounds 3 and 4 , of two 3‐hydroxypyridine‐2‐carbaldehyde thiosemicarbazones, 1 and 2 , resp., were prepared from Li2PdCl4. The single‐crystal X‐ray structure of complex 3 (= [Pd( 2 )Cl]) shows that the ligand monoanion coordinates in a planar conformation to the metal via the pyridyl N‐, the imine N‐, and the thiolato S‐atoms. Intermolecular H‐bonds, π–π, and CH ? ? ? π interactions lead to a two‐dimensional supramolecular assembly. The electronic, IR, UV/VIS, and NMR spectroscopic data of the two complexes are reported, together with their electrochemical properties. A sophisticated experimental procedure was used to determine the multiple dissociation constants of the ligands 1 and 2 by UV/VIS titration. 相似文献
14.
Two novel five‐coordinate zinc(II) complexes with the tripod ligand tris(N‐methylbenzimidazol‐2‐ylmethyl)amine (Mentb) and two different α,β‐unsaturated carboxylates, with the composition [Zn(Mentb)(acrylate)] (ClO4)·DMF·1.5CH3OH ( 1 ) and [Zn(Mentb)(cinnamate)](ClO4)·2DMF·0.5CH3OH ( 2 ), were synthesized and characterized by means of elemental analyses, electrical conductivity measurements, IR, UV, and 1H NMR spectra. The crystal structure of two complexes have been determined by a single‐crystal X‐ray diffraction method, and show that the ZnII atom is bonded to a Mentb ligand and a α,β‐unsaturated carboxylate molecule through four N atoms and one O atom, resulting in a distorted trigonal‐bipyramidal coordination [τ( 1 ) = 0.853, τ( 2 ) = 0.855], with approximate C3 symmetry. 相似文献
15.
A series of new 3‐(arylhydrazono)pentane‐2, 4‐diones ( 1 ‐ 6 ) synthesized from pentane‐2, 4‐dione and diazonium salts of respective anilines using the procedure of Japp‐Klingemann are described. Complexes with CuII and NiII salts are prepared ( 7 ‐ 10 , respectively). Spectroscopic properties of these compounds have been studied and X‐ray crystal structures of selected hydrazones ( 3 , 4 , 6 ) and of the hydrazone complexes ( 7 ‐ 10 ) are reported. The structures of the uncomplexed hydrazones feature an intramolecular N‐H···O interaction to yield a six‐membered H‐bond ring reflecting preference of the hydrazone tautomeric structure. All the complexes are mononuclear 2:1 (L:M) structures of six‐membered chelate type involving N2O2 binding sites that are quadratic arranged but differ in the entire coordination environment dependent on the metal and the ligand substitution including distorted octahedral and quadratic pyramidal coordination geometries in the CuII complexes 7 and 8 or nearly regular square planar coordination geometry in the NiII complexes 9 and 10 , respectively. In the crystal packings, strong and weak H‐bond interactions cause supramolecular network structures. 相似文献
16.
Mitra Ghassemzadeh Samira Bahemmat Javad Malakootikhah Bernhard Neumüller Alexander Rothenberger 《无机化学与普通化学杂志》2007,633(8):1178-1182
The reactions of AMTTO = 4‐amino‐6‐methyl‐1,2,4‐triazine‐thione‐5‐one (AMTTO, 1 ) with 2‐hydroxybenzaldehyde (salicylaldehyde) and 4‐hydroxybenzaldehyde in methanol under reflux conditions led to the corresponding Schiff‐bases ( H2L1 and H2L2 ). The reaction of H2L1 with palladium acetate in ethanol and additional recrystallization from toluene gave the tetrameric complex [Pd(L)]4·2C7H8 ( 2 ). All compounds were characterized by infrared spectroscopy, elemental analyses as well as by X‐ray diffraction studies. Crystal data for H2L1 at ?80 °C: space group P21/c with a = 1285.4(1), b = 707.7(1), c = 1348.2(1) pm, β = 109.32(1)°, Z = 4, R1 = 0.0328, H2L2 at ?80 °C: space group P43212 with a = 762.5(1), b = 762.5(1), c = 4038.9(2) pm, Z = 8, R1 = 0.025 and for 2 at ?103 °C: space group C2/c with a = 2862.5(6), b = 2847.6(6), c = 1727.8(4) pm, β = 105.18(3)°, Z = 8, R1 = 0.0704. 相似文献
17.
Treatment of Pd(PPh3)4 with 5‐bromo‐pyrimidine [C4H3N2Br] in dichloromethane at ambient temperature cause the oxidative addition reaction to produce the palladium complex [Pd(PPh3)2(η1‐C4H3N2)(Br)], 1 , by substituting two triphenylphosphine ligands. In acetonitrile solution of 1 in refluxing temperature for 1 day, it do not undergo displacement of the triphenylphosphine ligand to form the dipalladium complex [Pd(PPh3)Br]2{μ,η2‐(η1‐C4H3N2)}2, or bromide ligand to form chelating pyrimidine complex [Pd(PPh3)2(η2‐C4H3N2)]Br. Complex 1 reacted with bidentate ligand, NH4S2CNC4H8, and tridentate ligand, KTp {Tp = tris(pyrazoyl‐1‐yl)borate}, to obtain the η2‐dithiocarbamate η1‐pyrimidine complex [Pd(PPh3)(η1‐C4H3N2)(η2‐S2CNC4H8)], 4 and η2‐Tp η1‐pyrimidine complex [Pd(PPh3)(η1‐C4H3N2)(η2‐Tp)], 5 , respectively. Complexes 4 and 5 are characterized by X‐ray diffraction analyses. 相似文献
18.
Rosa Carballo Berta Covelo Ezequiel M. Vzquez‐Lpez Emilia García‐Martínez Alfonso Castieiras Juan Nicls 《无机化学与普通化学杂志》2005,631(4):785-792
Several new two‐ligand complexes of zinc(II) with the aromatic N, N‐donor ligands 2, 2′‐bipyridine or 1, 10‐phenanthroline and one of three different α‐hydroxycarboxylates (HL′) derived of the α‐hydroxycarboxylic acids (H2L′) (2‐methyllactic, H2mL; mandelic, H2M or benzilic, H2B) were prepared. The compounds of formula [Zn(HL′)2(NN)]·nH2O (HL′ = HM, HB) were isolated as white powders and characterized by elemental analysis, IR spectroscopy and thermogravimetric analysis. The complexes of general formula [Zn(HL′)(NN)2](HL′)·nH2O (HL′ = HmL, HM) and [Zn(HB)2(NN)2], were obtained as single crystals and were characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis and X‐ray diffractometry. In all cases, the zinc atom is in a distorted octahedral environment. In [Zn(HL′)(NN)2](HL′)·nH2O the α‐hydroxycarboxylato ligands behave as bidentate chelating monoanion and an α‐hydroxycarboxylate as counterion is also present. In [Zn(HB)2(NN)2], the monoanionic benzilato ligand behaves as monodentate through one oxygen atom of the carboxylate function. The effect of the classical and no‐classical hydrogen bonding and of the π‐π and C‐H…π interactions in the 3D supramolecular arrangement of these molecular complexes is analyzed. 相似文献
19.
Leonardo C. Ferreira Carlos A. L. Filgueiras Prof. Dr. Lorenzo C. Visentin Jairo Bordinhaõ Manfredo Hörner 《无机化学与普通化学杂志》2009,635(8):1225-1230
The preparation and spectroscopic and structural characterization of three ZnII complexes with bis[N‐(2,6‐dimethylphenyl)imine]acenaphthene, L1, and with bis[N‐(2‐ethylphenyl)imine]acenaphthene, L2, are decribed herein. Two of the complexes were prepared from ZnCl2 and the third from Zn(NCS)2. One‐pot reaction techniques were used, leading to high yields. The complexes were characterized by microanalysis, IR and 1H NMR spectroscopy, and single‐crystal X‐ray diffraction. The structures of the complexes are significantly different, with the chloride‐containing species forming distorted tetrahedra around the metal, whereas its thiocyanate analog is dimeric, with each metal at the center of a distorted square pyramid, with bridging and terminal [SCN]– ligands. 相似文献
20.
The metathesis of [PhB(μ‐NtBu)2]AsCl and tBuN(H)Li in 1:1 molar ratio in diethyl ether produced the amido derivative [PhB(μ‐NtBu)2AsN(tBu)H] ( 1 ) in good yield. The lithiation of 1 with one equivalent of nBuLi afforded the lithium salt [PhB(μ‐NtBu)2AsN(tBu)Li] ( 2a ). Both 1 and 2a were characterized by multinuclear NMR spectroscopy. The crystal structure of 2a is comprised of a U‐shaped, centrosymmetric dimer in which the monomeric [PhB(μ‐NtBu)2AsN(tBu)]?Li+ units are linked by Li‐N interactions to give a six‐rung ladder. Oxidation of 2a with one‐half equivalent of I2 in diethyl ether resulted in hydrogen abstraction from the solvent to give the dimeric lithium iodide adduct {[PhB(μ‐NtBu)2AsN(tBu)H]LiI}2 ( 1 ·LiI) with a central Li2I2 ring. 相似文献