首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this work, silver nanoparticles are synthesized using a simple and sensitive method by using double-stranded DNA (dsDNA-Ag NPs) as a template. The prepared dsDNA-Ag NPs are characterized by fluorescence spectroscopy analysis, X-ray photoelectron spectroscopy analysis, and transmission electron microscopy analysis. The excitation wavelength of the prepared silver nanoparticles is 295 nm, the emission wavelength is 377 nm, the average particle size is 11.2 nm, and the dispersion is uniform with pleasurable stability. The nanomaterials are used as fluorescent probes to detect glutathione (GSH). After adding glutathione to the dsDNA-Ag NPs fluorescent probes, the fluorescence of dsDNA-Ag NPs is burst due to electron transfer and S Ag bond generation, and the linear range of detection concentration is 0–90 mm with a detection limit of 0.37 mm .  相似文献   

2.
Multifunctional nanoparticles (NPs) combining the superparamagnetism of Mn−Zn ferrite and the fluorescence property of gold nanoclusters (NCs) have been prepared by wet chemistry. Magnetic NPs synthesized by co-precipitation method were coated several times with oppositely charged polyelectrolytes (PEs) using the layer-by-layer technique. Common techniques (Fourier transform infrared spectroscopy, electron microscopy, zeta potential, etc.) indicated the monodispersity and the stability of the coated NPs providing a positive charged surface. Fluorescent gold NCs bound to a standard protein bovine serum albumin were adsorbed on the surface of the magnetic NPs. Structural investigations proved the presence of small gold clusters (~2 nm) in a shell surrounding the magnetic nanomaterial. The stable nanocomposite kept the original fluorescence property of the metal clusters with 211-fold increase of the red emission (λ = 690 nm) compared to the uncoated NPs. These NPs can be moved with a permanent magnet despite a 72-wt% increase of the non-magnetic fraction due to the PE coating and the protein adsorption.  相似文献   

3.
Gelatin-stabilized gold nanoparticles (AuNPs-gelatin) with controlled particle size were synthesized with simple variation of concentration of gelatin by reducing in situ tetrachloroauric acid with sodium citrate. The nanoparticles showed excellent colloidal stability. Transmission electron microscopy (TEM) revealed the formation of well-dispersed gold nanoparticles (AuNPs) with different sizes. The methodology produces particles 10–15 nm in size depending on the concentration of gelatin used. The measured AuNPs are 10, 11, 12, 13, 14, and 15 nm for AuNPs-gelatin 1, 0.5, 0.25, 0.1 and 0.05%, and pure AuNPs, respectively. The AuNPs-gelatin exhibit size-dependent localized surface plasmon resonance behavior as measured by UV–visible spectroscopy. UV–vis spectroscopy and TEM results suggest that higher concentration of gelatin favor smaller particle size and vice versa. FTIR spectroscopy analysis of AuNPs-gelatin revealed the amino bands and carboxyl peak of gelatin. The crystalline nature of AuNPs was investigated by X-ray diffraction.  相似文献   

4.
《Ultrasonics sonochemistry》2014,21(4):1570-1577
A rapid in situ biosynthesis of gold nanoparticles (AuNPs) is proposed in which a geranium (Pelargonium zonale) leaf extract was used as a non-toxic reducing and stabilizing agent in a sonocatalysis process based on high-power ultrasound. The synthesis process took only 3.5 min in aqueous solution under ambient conditions. The stability of the nanoparticles was studied by UV–Vis absorption spectroscopy with reference to the surface plasmon resonance (SPR) band. AuNPs have an average lifetime of about 8 weeks at 4 °C in the absence of light. The morphology and crystalline phase of the gold nanoparticles were characterized by transmission electron microscopy (TEM). The composition of the nanoparticles was evaluated by electron diffraction and X-ray energy dispersive spectroscopy (EDS). A total of 80% of the gold nanoparticles obtained in this way have a diameter in the range 8–20 nm, with an average size of 12 ± 3 nm. Fourier transform infrared spectroscopy (FTIR) indicated the presence of biomolecules that could be responsible for reducing and capping the biosynthesized gold nanoparticles. A hypothesis concerning the type of organic molecules involved in this process is also given. Experimental design linked to the simplex method was used to optimize the experimental conditions for this green synthesis route. To the best of our knowledge, this is the first time that a high-power ultrasound-based sonocatalytic process and experimental design coupled to a simplex optimization process has been used in the biosynthesis of AuNPs.  相似文献   

5.
《Current Applied Physics》2010,10(6):1442-1447
This paper presents a novel, inexpensive and one-step approach for synthesis of silver nanoparticles (Ag NPs) using arc discharge between titanium electrodes in AgNO3 solution. The resulting nanoparticles were characterized using UV–Vis spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Silver nanoparticles of 18 nm diameter were formed during reduction of AgNO3 in plasma discharge zone. Optical absorption spectroscopy of as prepared samples at 15 A arc current in AgNO3 solution shows a surface plasmon resonance around 410 nm. It was found that sodium citrate acts as a stabilizer and surface capping agent of the colloidal nanoparticles. SEM images exhibit the increase of reduced nanoparticles in 6 min arc duration compared with 1 min arc duration. TEM image of the sample prepared at 6 min arc duration shows narrow size distribution with 18 nm mean particle size. Antibacterial activities of silver nanoparticles were investigated at the presence of Escherichia coli (E-coli) bacteria.  相似文献   

6.
In the present work, silver nanoparticles (Ag NPs)/graphene nanocomposite has been synthesized successfully by simple solvothermal method via green route. Citric acid is used as green reducing agent for the reduction of graphene oxide (GO) and Ag ions. Silver nitrate is used as a precursor material for Ag NPs. As synthesized Ag NPs/graphene nanocomposite has been characterized by X-ray diffraction, Raman spectroscopy, Fourier transform infra-red spectroscopy, UV–vis spectroscopy, thermal gravimetric analysis, field emission scanning electron microscopy, and X-ray photoelectron spectroscopy. Experimental results confirm the reduction of GO and the successful formation of Ag NPs decorated graphene nanosheets. In addition, spray coating technique is employed for the fabrication of transparent conducting films. Enhancement in the optoelectrical signatures has been achieved using thermal graphitization of fabricated films. Thermal graphitization at 800 °C for 1 h marks the best performance of fabricated film with sheet resistance of ~3.4 kΩ/□ and transmittance (550 nm) of ~66.40%, respectively.  相似文献   

7.
We synthesized zinc sulfide (ZnS) nanopowders with size ranging from 2 to 100 nm by a simple, low-cost, and mass production chemical method. The nanoparticles (NPs) were characterized by X-ray powder diffraction (XRD), atomic force microscopy (AFM), transmission electron microscopy (TEM), and UV-vis absorption spectroscopy. Our study concerns also the change in the refractive index of deionized water in presence of ZnS nanospheres. We present experimental results on effective index variation of water dispersed ZnS NPs at different wavelengths in visible spectrum.  相似文献   

8.
ZnO nanoparticles (NPs) have been successfully synthesized by the simple solution method at low temperature. The effects of annealing temperature on the structure and optical properties of ZnO NPs were investigated in detail by X-ray diffraction, transmission electron microscopy (TEM), ultraviolet–visible (UV–vis) spectroscopy and photoluminescence (PL) measurements. As the annealing temperature was increased above 180 °C the particles morphology evolved from spherical to hexagonal shape, indicating that the average particle size increased from 11 nm to 87 nm. The UV-vis and PL spectra showed a red-shift from 3.62 to 3.33 eV when the annealing temperature was increased.  相似文献   

9.
In this study, in situ control growth of bismuth nanoparticles (Bi0 NPs) was demonstrated in bismuth-based glass dielectrics under an electron beam (EB) irradiation at room temperature. The effects of EB irradiation were investigated in situ using transmission electron microscopy (TEM), selected-area electron diffraction and high-resolution transmission electron microscopy. The EB irradiation for 2–8 min enhanced the construction of bismuth nanoparticles with a rhombohedral structure and diameter of 4–9 nm. The average particle size was found to increase with the irradiation time. Bismuth metal has a melting point of 271 °C and this low melting temperature makes easy the progress of energy induced structural changes during in situ TEM observations. This is a very useful technique in nano-patterning for integrated optics and other applications.  相似文献   

10.
《Current Applied Physics》2020,20(11):1201-1206
Light-emitting organic semiconductors have attracted considerable attention for the nanoscale fabrication of organic-based displays and their potential application in optoelectronics, plasmonics, and photonics. In this study, core-shell hybrid nanostructures of organic rubrene coated on Ag nanoparticles (NPs) have been synthesized using a chemical reduction method. The thickness of the rubrene shell was 2.6–6.0 nm and the diameter of the Ag core was 30–70 nm. The optical and structural properties of the Ag/rubrene core-shell NPs were tuned by hydrothermal (HT) treatment at 190 °C. The Ag/rubrene core-shell NPs were characterized by high-resolution transmission electron microscopy and energy-dispersive X-ray (EDX) spectroscopy before and after the HT treatment, and their structural properties were confirmed through X-ray diffraction (XRD) analysis. XRD peaks related to an orthorhombic phase were observed along with the original triclinic crystal structure of the rubrene shell, and the triclinic crystal domain size increased from 28.2 nm to 30.8 nm owing to the HT treatment. Interestingly, the green light emission (λem = 550 nm) of the Ag/rubrene core-shell NPs changed to blue light emission (λem = 425 nm), increasing in intensity through the HT treatment. This is caused by the crystal change with H-type aggregation and enhanced energy transfer from a surface plasmon resonance.  相似文献   

11.
《Ultrasonics sonochemistry》2014,21(6):1958-1963
A simple sonochemical route was developed for the preparation of gold nanoparticles/boron nitride sheets (AuNPs/BNS) nanocomposites without using reducing or stabilizing agents. Transmission electron microscopy, scanning electron microscopy, X-ray diffraction, and UV–vis absorption spectra were used to characterize the structure and morphology of the nanocomposites. The experimental results showed that AuNPs with approximately 20 nm were uniformly attached onto the BNS surface. It was found that the AuNPs/BNS nanocomposites exhibited good catalytic activity for the reduction of H2O2. The modified electrochemical sensor showed a linear range from 0.04 to 50 mM with a detection limit of 8.3 μM at a signal-to-noise ratio of 3. The findings provide a low-cost approach to the production of stable aqueous dispersions of nanoparticles/BNS nanocomposites.  相似文献   

12.
Data from investigating the formation of nanoparticles (NPs) on a surface of silicon wafers after zinc ion implantation and thermal annealing are presented. The investigation is conducted by means of trans-mission electron microscopy, electron diffraction analysis, energy dispersive microanalysis, scanning tunneling microscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy. It is found that on their surfaces, the implanted samples have only films of amorphous silicon containing implanted zinc, oxygen, and carbon contamination. Thermal treatment in the range of 400–800°C leads to the formation NP with 20–50 nm wide and 10 nm tall on a wafer’s surface, plus a silicon oxide layer about 20 nm thick. NPs are composed of zinc compounds of the ZnO, ZnSiO3, or Zn2SiO4 types. These NPs disappear after annealing at 1000°C.  相似文献   

13.
A green method, using pulsed spark-discharge (PSD) to synthesize gold nanoparticles (AuNPs) in ethanol, is studied in this article. Unlike conventional methods for metal nanoparticles synthesis, the PSD method does not require the addition of chemical surfactants and stabilizers. The size of PSD–AuNPs is examined by transmission electron microscopy, with a range 5–50 nm. The chemical compounds, crystal structure, and surface plasmon resonance of PSD–AuNPs are studied using energy dispersive X-ray spectroscopy, X-ray diffraction, and UV–Visible spectroscopy, respectively. Zeta potential analysis shows that a negative charge (−40 mV) on the surface of the PSD–AuNPs may be contributing to the stability of the suspension. During the gold electrodes discharge in the ethanol, under an intensive electric field and thermal energy, bulk metallic gold and ethanol may produce AuNPs and varieties of chemical derivatives, which are also studied by GC/MS and FTIR to investigate the suspension mechanism. The analysis results show that there is an oxidation reaction of ethanol occurring during the PSD process to produce ethanol derivatives, such as acetaldehyde, acetic acid, and ethyl acetate, which may modify the surface of AuNPs by coordination of oxygen atoms. However, only acetic acid can form a negative charge by the deprotonation of the carboxylic group of surface in ethanol, resulting in the creation of a repulsion force between the particles to form the stable colloid system. The experimental results indicate that PSD is an alternative green process to synthesize gold nanoparticles suspension in ethanol. Moreover, with a gold rod consumption rate of 15 mg/L, concentrations of gold nanoparticles ~9 ppm have been observed; therefore, the net production rate is around 60%.  相似文献   

14.
Titanium oxide nanoparticles (NPs) were successfully prepared by sparking off two titanium tips into water for 1–5 h. The nanoparticle-dispersed water was obtained for further characterization. The transmission electron microscopy result shows that the particle size is in the range of 1–5 nm. The electron diffraction patterns and Raman spectra reveal that the as-prepared and the annealed samples at 250 °C are the anatase phase. However, the anatase–rutile phase transformation was observed from the samples at annealing temperature as low as 500 °C. The result of methylene blue-decoloration testing under sunbath suggests that the NPs have good photocatalytic property.  相似文献   

15.
The controllable synthesis and characterization of novel thermally stable silver-based particles are described. The experimental approach involves the design of thermally stable nanostructures by the deposition of an interfacial thick, active titania layer between the primary substrate (SiO2 particles) and the metal nanoparticles (Ag NPs), as well as the doping of Ag nanoparticles with an organic molecule (Congo Red, CR). The nanostructured particles were composed of a 330-nm silica core capped by a granular titania layer (10 to 13 nm in thickness), along with monodisperse 5 to 30 nm CR-Ag NPs deposited on top. The titania-coated support (SiO2/TiO2 particles) was shown to be chemically and thermally stable and promoted the nucleation and anchoring of CR-Ag NPs, which prevented the sintering of CR-Ag NPs when the structure was exposed to high temperatures. The thermal stability of the silver composites was examined by scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). Larger than 10 nm CR-Ag NPs were thermally stable up to 300 °C. Such temperature was high enough to destabilize the CR-Ag NPs due to the melting point of the CR. On the other hand, smaller than 10 nm Ag NPs were stable at temperatures up to 500 °C because of the strong metal-metal oxide binding energy. Energy dispersion X-ray spectroscopy (EDS) was carried out to qualitatively analyze the chemical stability of the structure at different temperatures which confirmed the stability of the structure and the existence of silver NPs at temperatures up to 500 °C.  相似文献   

16.
A novel chitosan coated poly(butyl cyanoacrylate) (PBCA) nanoparticles loaded doxorubicin (DOX) were synthesized and then conjugated with folic acid to produce a folate-targeted drug carrier for tumor-specific drug delivery. Prepared nanoparticles were surface modified by folate for targeting cancer cells, which is confirmed by FTIR spectroscopy and characterized for shape, size, and zeta potential measurements. The size and zeta potential of prepared DOX-PBCA nanoparticles (DOX-PBCA NPs) were almost 174 ± 8.23 nm and +23.14 ± 4.25 mV, respectively with 46.8 ± 3.32% encapsulation capacity. The transmission electron microscopy study revealed that preparation allowed the formation of spherical nanometric and homogeneous. Fluorescent microscopy imaging and flow cytometry analysis revealed that DOX-PBCA NPs were endocytosed into MCF-7 cells through the interaction with overexpressed folate receptors on the surface of the cancer cells. The results demonstrate that folate-conjugated DOX-PBCA NPs drug delivery system could provide increased therapeutic benefit by delivering the encapsulated drug to the folate receptor positive cancer cells.  相似文献   

17.
Yb3+–Tm3+ codoped tellurite glasses containing silver nanoparticles (NPs) were synthesized and characterized using transmission electron microscopy and optical techniques. The samples’ composition and the nucleation of NPs were investigated using electron diffraction and energy dispersive spectroscopy. For the optical experiments, the samples were excited using a diode laser operating at 980 nm, in resonance with the Yb3+ transition 2F7/22F5/2. Photoluminescence (PL) bands corresponding to Tm3+ transitions were observed at 480, 650, and 800 nm due to the Yb3+→ Tm3+ energy transfer. PL enhancement was achieved by heat-treatment of the samples at 325°C during different time intervals. The growth of the PL bands correlates with the increase of the silver NPs concentration. The relevant mechanisms contributing for the PL characteristics are discussed.  相似文献   

18.
Amino—functionalized gold nanoparticles with a diameter of around 5 nm were immobilized onto the surface of graphene oxide sheets (GOS) by covalent bonding through a simple amidation reaction. Pristine graphite was firstly oxidized and exfoliated to obtain GOS, which further were acylated with thionyl chloride to give acyl chloride bound GOS. Gold nanoparticles (AuNPs) were functionalized using 4-aminothiophenol in a single-phase system to introduce amino groups on their surface through the well-developed Au-S chemistry. Subsequently, amino groups of AuNPs were reacted with acyl chloride groups of GOS to form a novel hybrid material containing GOS and AuNPs. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), energy dispersive X-ray (EDX) spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy were used to study the changes in surface functionalities and demonstrate the successful immobilization of AuNPs on GOS surface. High resolution transmission electron microscopy (HR-TEM), field emission scanning electronic microscopy (FE-SEM), and atomic force microscopy (AFM) were employed to investigate the morphologies of prepared AuNPs and their distribution onto the GOS surface. Thermogravimetric analysis (TGA) was used to characterize the thermal stability of the samples on heating.  相似文献   

19.
Au nanoparticles (NPs) with a size in the 2–12 nm range have been grown in silica by 2 MeV Au-ion implantation and a subsequent thermal annealing in air. The as-prepared Au NPs were irradiated with 10 MeV Si ions elongating some of them. From transmission electron microscopy in Z-contrast mode, we observed a narrow size distribution of the minor axis of the deformed NPs, which presents its higher frequency around 6–7 nm and have a saturation about 9 nm. This final result agrees well with the diameter of the track formed by Si ions of 10 MeV in silica, supporting the thermal spike model, which would explain the deformation of the NPs. In this model, the NP melts and creeps along the ion track. Our results show that the NP crystallization is in the fcc structure. On the other hand, a 200 keV electron irradiation provoked roundness on the previously elongated nanoparticles. This effect was observed in situ by high-resolution transmission electron microscopy, showing additionally that, during the roundness process, the fcc structure, as well as its crystalline orientation, remain unchanged. Thus, this study shows how Au NPs embedded in silica, within this size distribution, keep the fcc bulk structure under both ion and electron irradiations.  相似文献   

20.
In the present study, we have explored anti-tumor potent Crocus sativus (saffron) as a reducing agent for one pot size controlled green synthesis of gold nanoparticles (AuNps) at ambient conditions. The nanoparticles were characterized using UV–vis, scanning electron microscope (SEM), high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD) and FTIR analysis. The prepared AuNPs showed surface Plasmon resonance centered at 549 nm with average particle size of 15±5 nm. Stable, spherical and triangular crystalline AuNPs with well-defined dimensions were synthesized using anti-tumor potent Crocus sativus (saffron). Crystalline nature of the nanoparticles is confirmed from the HR-TEM, SAED and SEM images, and XRD patterns. From the FTIR spectra it is found that the biomolecules are responsible for capping in gold nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号