首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The title compound [systematic name: 3,10,13,20‐tetra­bromo‐4,9,14,19‐tetrapropyl‐21,22,23,24‐tetraazapentacyclo[16.2.1.12,5.18,11.112,15]tetracosa‐2(22),3,5,7,9,11,13,15(24),16,18,20‐undecaene], C32H34Br4N4, crystallizes in two distinct crystalline forms, viz. monoclinic prisms and triclinic plates, and the first of these is described here. The molecule of the prismatic form has a centre of symmetry and a more warped structure than that of the triclinic plate‐like form. The shape of the central N4 cavity is rectanglar, enlarged in the direction of the methine‐bridge C atoms, and the N?N distances are 2.713 (3) and 2.818 (3) Å.  相似文献   

2.
The structures of 4‐chloro‐3‐nitroaniline, C6H5ClN2O2, (I), and 4‐iodo‐3‐nitroaniline, C6H5IN2O2, (II), are isomorphs and both undergo continuous (second order) phase transitions at 237 and 200 K, respectively. The structures, as well as their phase transitions, have been studied by single‐crystal X‐ray diffraction, Raman spectroscopy and difference scanning calorimetry experiments. Both high‐temperature phases (293 K) show disorder of the nitro substituents, which are inclined towards the benzene‐ring planes at two different orientations. In the low‐temperature phases (120 K), both inclination angles are well maintained, while the disorder is removed. Concomitantly, the b axis doubles with respect to the room‐temperature cell. Each of the low‐temperature phases of (I) and (II) contains two pairs of independent molecules, where the molecules in each pair are related by noncrystallographic inversion centres. The molecules within each pair have the same absolute value of the inclination angle. The Flack parameter of the low‐temperature phases is very close to 0.5, indicating inversion twinning. This can be envisaged as stacking faults in the low‐temperature phases. It seems that competition between the primary amine–nitro N—H...O hydrogen bonds which form three‐centred hydrogen bonds is the reason for the disorder of the nitro groups, as well as for the phase transition in both (I) and (II). The backbones of the structures are formed by N—H...N hydrogen bonding of moderate strength which results in the graph‐set motif C(3). This graph‐set motif forms a zigzag chain parallel to the monoclinic b axis and is maintained in both the high‐ and the low‐temperature structures. The primary amine groups are pyramidal, with similar geometric values in all four determinations. The high‐temperature phase of (II) has been described previously [Garden et al. (2004). Acta Cryst. C 60 , o328–o330].  相似文献   

3.
A second polymorphic form (form II) of the previously reported 1,4,7‐tris(p‐tolylsulfonyl)‐1,4,7‐triazacyclononane (form I), C27H33N3O6S3, is presented. The molecular structures of the two forms display very different conformations, thus prompting the two forms to crystallize in two different space groups and exhibit quite diverse crystal structure assemblies. Form I crystallizes in the triclinic space group P, while form II crystallizes in the monoclinic space group P21/n. The main differences between the two molecular structures are the conformations of the p‐tosyl groups relative to each other and to the macrocyclic ring. The resulting crystal packing displays no classical hydrogen bonds, but different supramolecular synthons give rise to different packing motifs.  相似文献   

4.
The title benzothiazine‐3‐carboxamide, C17H16N2O4S, crystallized in two enantiomorphic crystal forms with the space groups P32 and P31 despite the absence of a classic stereogenic atom. The molecular structures are mirror images of each other. Only one sulfonyl O atom takes part in intramolecular hydrogen bonding as a proton acceptor and this atom is different in the two enantiomorphic structures. As a result, the S atom becomes a pseudo‐stereogenic centre. This fact is worth taking into account due to the different biological activities of the enantiomorphic forms. One form possesses a high analgesic activity, while the other form revealed a high anti‐inflammatory activity.  相似文献   

5.
Two different tautomeric forms of a new Schiff base, C17H19N3O2·C17H19N3O2, are present in the crystal in a 1:1 ratio, namely the enol–imine form 4‐(1‐{[4‐(dimethylamino)benzylidene]hydrazono}ethyl)benzene‐1,3‐diol and the keto–amine form 6‐[(E)‐1‐{[4‐(dimethylamino)benzylidene]hydrazino}ethylidene]‐3‐hydroxycyclohexa‐2,4‐dien‐1‐one. The tautomers are formed by proton transfer between the hydroxy O atom and the imine N atom and are hydrogen bonded to each other to form a one‐dimensional zigzag chain along the crystallographic b axis via intermolecular hydrogen bonds.  相似文献   

6.
The fact that molecular crystals exist as different polymorphic modifications and the identification of as many polymorphs as possible are important considerations for the pharmaceutic industry. The molecule of N‐benzyl‐4‐hydroxy‐1‐methyl‐2,2‐dioxo‐1H‐2λ6,1‐benzothiazine‐3‐carboxamide, C17H16N2O4S, does not contain a stereogenic atom, but intramolecular hydrogen‐bonding interactions engender enantiomeric chiral conformations as a labile racemic mixture. The title compound crystallized in a solvent‐dependent single chiral conformation within one of two conformationally polymorphic P212121 orthorhombic chiral crystals (denoted forms A and B). Each of these pseudo‐enantiomorphic crystals contains one of two pseudo‐enantiomeric diastereomers. Form A was obtained from methylene chloride and form B can be crystallized from N,N‐dimethylformamide, ethanol, ethyl acetate or xylene. Pharmacological studies with solid–particulate suspensions have shown that crystalline form A exhibits an almost fourfold higher antinociceptive activity compared to form B.  相似文献   

7.
The title dinuclear platinum(III) complex, [Pt2(C11H8N)2(C5H4NS)4], forms two crystal structures, viz. the non‐solvated and acetonitrile‐solvated (C2H3N) forms. For both forms, two (2‐pyridylphenyl)platinum units are bridged by two pyridine‐2‐thiol­ate (pyt) anions in a head‐to‐tail configuration, and the other two pyridine‐2‐thiol­ate anions occupy the axial position, coordinated through their S atoms. The most remarkable difference between the two forms is the orientation of the axial monodentate ligands. Those for the solvated form are located over the 2‐pyridylphenyl ligands, being related by a twofold axis which lies through the centre of the Pt—Pt bond, while the axial pyt ligands for the non‐solvated form are oriented irregularly, which is attributable to the dimeric arrangement in the crystal.  相似文献   

8.
The contributions of the amino and imino resonance forms to the ground‐state structures of 2‐amino‐4‐methylpyridinium nitrate, C6H9N2+·NO3, and the previously reported 2‐amino‐5‐methylpyridinium nitrate [Yan, Fan, Bi, Zuo & Zhang (2012). Acta Cryst. E 68 , o2084], were studied using a combination of IR spectroscopy, X‐ray crystallography and density functional theory (DFT). The results show that the structures of 2‐amino‐4‐methylpyridine and 2‐amino‐5‐methylpyridine obtained upon protonation are best described as existing largely in the imino resonance forms.  相似文献   

9.
The title macrocycle, C26H30N2O6, (VI), was obtained by `direct amide cyclization' from the linear precursor 3‐hydr­oxy‐N‐[1‐methyl‐1‐(N‐methyl‐N‐phenyl­carbamoyl)ethyl]‐2‐phenylpropanamide, the N‐methyl­anilide of rac‐2‐methyl‐2‐[(3‐hydroxy‐2‐phenyl­propanoyl)­amino]­propanoic acid, C13H17NO4, (IV). The reaction proceeds via the inter­mediate rac‐2‐(2‐hydroxy‐1‐phenyl­ethyl)‐4,4‐dimethyl‐1,3‐oxazol‐5(4H)‐one, C13H15NO3, (V), which was synthesized independently and whose structure was also established. Unlike all previously described analogues, the title macrocycle has the cis‐diphenyl configuration. The 14‐membered ring has a distorted rect­angular diamond‐based [3434] configuration and inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into a three‐dimensional framework. The propanoic acid precursor forms a complex series of inter­molecular hydrogen bonds, each of which involves pairwise association of mol­ecules and which together result in the formation of extended two‐dimensional sheets. The oxazole inter­mediate forms centrosymmetric hydrogen‐bonded dimers in the solid state.  相似文献   

10.
The title keto acid, (+)‐23,24‐dinor‐3‐oxo­chol‐4‐en‐22‐oic acid, C22H32O3, forms carboxyl‐to‐ketone hydrogen‐bonding catemers [O?O = 2.699 (4) Å and O—H?O = 173°], linking mol­ecules screw‐related in b. The four mol­ecules in the cell form two parallel counter‐directional chains, screw‐related in a. Intermolecular C—H?O=C close contacts to different neighboring mol­ecules were found for the ketone and the acid.  相似文献   

11.
The present paper reports the crystal structures of two short phosphonotripeptides (one in two crystal forms) containing one ΔPhe (dehydrophenylalanine) residue, namely dimethyl (3‐{[tert‐butoxycarbonylglycyl‐α,β‐(Z)‐dehydrophenylalanyl]amino}propyl)phosphonate, Boc0–Gly1–Δ(Z)Phe2–α‐Abu3PO3Me2, C21H32N3O7P, (I), and diethyl (4‐{[tert‐butoxycarbonylglycyl‐α,β‐(Z)‐dehydrophenylalanyl]amino}butyl)phosphonate, Boc0–Gly1–Δ(Z)Phe2–α‐Nva3PO3Et2, as the propan‐2‐ol monosolvate 0.122‐hydrate, C24H38N3O7P·C3H8O·0.122H2O, (II), and the ethanol monosolvate 0.076‐hydrate, C24H38N3O7P·C2H6O·0.076H2O, (III). The crystals of (II) and (III) are isomorphous but differ in the type of solvent. The phosphono group is linked directly to the last Cα atom in the main chain for all three peptides. All the amino acids are trans linked in the main chains. The crystal structures exhibit no intramolecular hydrogen bonds and are stabilized by intermolecular hydrogen bonds only.  相似文献   

12.
Maleic acid and fumaric acid, the Z and E isomers of butenedioic acid, form 1:1 adducts with 2‐amino‐1,3‐thiazole, namely 2‐amino‐1,3‐thiazolium hydrogen maleate (2ATHM), C3H5N2S+·C4H3O4, and 2‐amino‐1,3‐thiazolium hydrogen fumarate (2ATHF), C3H5N2S+·C4H3O4, respectively. In both compounds, protonation of the ring N atom of the 2‐amino‐1,3‐thiazole and deprotonation of one of the carboxyl groups are observed. The asymmetric unit of 2ATHF contains three independent ion pairs. The hydrogen maleate ion of 2ATHM shows a short intramolecular O—H...O hydrogen bond with an O...O distance of 2.4663 (19) Å. An extensive hydrogen‐bonded network is observed in both compounds, involving N—H...O and O—H...O hydrogen bonds. 2ATHM forms two‐dimensional sheets parallel to the ab plane, extending as independent parallel sheets along the c axis, whereas 2ATHF forms two‐dimensional zigzag layers parallel to the bc plane, extending as independent parallel layers along the a axis.  相似文献   

13.
1,2‐Diaza‐3‐silacyclopent‐5‐ene – Synthesis and Reactions The dilithium salt of bis(tert‐butyl‐trimethylsilylmethylen)ketazine ( 1 ) forms an imine‐enamine salt. 1 reacts with halosilanes in a molar ratio of 1:1 to give 1,2‐diaza‐3‐silacyclopent‐5‐enes. Me3SiCH=CCMe3 [N(SiR,R′)‐N=C‐C]HSiMe3 ( 2 ‐ 7 ). ( 2 : R,R′ = Cl; 3 : R = CH3, R′ = Ph; 4 : R = F, R′ = CMe3; 5 : R = F, R′ = Ph; 6 : R = F, R′ = N(SiMe3)2; 7 : R = F, R′ = N(CMe3)SiMe3). In the reaction of 1 with tetrafluorosilane the spirocyclus 8 is isolated. The five‐membered ring compounds 2 ‐ 7 and compound 9 substituted on the silicon‐fluoro‐ and (tert‐butyltrimethylsilyl) are acid at the C(4)‐atom and therefore can be lithiated. Experiments to prepare lithium salts of 4 with MeLi, n‐BuLi and PhLi gave LiF and the substitution‐products 10 ‐ 12 . 9 forms a lithium salt which reacts with ClSiMe3 to give LiCl and the SiMe3 ring system ( 13 ) substituted at the C(4)‐atom. The ring compounds 3 ‐ 7 and 10 ‐ 12 form isomers, the formation is discussed. Results of the crystal structure and analyses of 8 , 10 , 12 , and 13 are presented.  相似文献   

14.
The dipharmacophore compound 3‐cyclopropyl‐5‐(3‐methyl‐[1,2,4]triazolo[4,3‐a]pyridin‐7‐yl)‐1,2,4‐oxadiazole, C12H11N5O, was studied on the assumption of its potential biological activity. Two polymorphic forms differ in both their molecular and crystal structures. The monoclinic polymorphic form was crystallized from more volatile solvents and contains a conformer with a higher relative energy. The basic molecule forms an abundance of interactions with relatively close energies. The orthorhombic polymorph was crystallized very slowly from isoamyl alcohol and contains a conformer with a much lower energy. The basic molecule forms two strong interactions and a large number of weak interactions. Stacking interactions of the `head‐to‐head' type in the monoclinic structure and of the `head‐to‐tail' type in the orthorhombic structure proved to be the strongest and form stacked columns in the two polymorphs. The main structural motif of the monoclinic structure is a double column where two stacked columns interact through weak C—H…N hydrogen bonds and dispersive interactions. In the orthorhombic structure, a single stacked column is the main structural motif. Periodic calculations confirmed that the orthorhombic structure obtained by slow evaporation has a lower lattice energy (0.97 kcal mol?1) compared to the monoclinic structure.  相似文献   

15.
The title compound [systematic name: di­methyl 4,4′‐(1,3,4‐oxa­diazole‐2,5‐diyl)­di­phenyl­enedi­carboxyl­ate], C18H14N2O5, crystallizes under similar conditions in two different ortho­rhombic crystalline forms. In both forms, the mol­ecule consists of two equivalent parts. In form 1, these parts are related by a twofold axis of space group Pbcn, and in form 2, by a mirror plane of space group Cmc21. The O atom of the oxa­di­azole ring occupies a special position on the twofold axis and on the mirror plane in forms 1 and 2, respectively.  相似文献   

16.
5‐Methyl­sulfanyl‐1H‐tetrazole, C2H4N4S, crystallizes in dimor­phic forms; the α‐form crystallizes at room temperature in the monoclinic crystal system, space group P21/m, and the β‐form crystallizes by sublimation at 423 K in the orthorhombic crystal system, space group Pbcm. In both forms, the mol­ecules occupy crystallographic mirror planes and are connected to one another via N—H⋯N hydrogen bonds, the amino H atoms being disordered. The two forms differ from one another in their packing; there are polar layers in the α‐form and non‐polar layers in the β‐form.  相似文献   

17.
Pd‐mediated Negishi cross‐coupling reactions were studied by a combination of kinetic measurements, electrospray‐ionization (ESI) mass spectrometry, 31P NMR and UV/Vis spectroscopy. The kinetic measurements point to a rate‐determining oxidative addition. Surprisingly, this step seems to involve not only the Pd catalyst and the aryl halide substrate, but also the organozinc reagent. In this context, the ESI‐mass spectrometric observation of heterobimetallic Pd–Zn complexes [L2PdZnR]+ (L=S‐PHOS, R=Bu, Ph, Bn) is particularly revealing. The inferred presence of these and related neutral complexes with a direct Pd–Zn interaction in solution explains how the organozinc reagent can modulate the reactivity of the Pd catalyst. Previous theoretical calculations by González‐Pérez et al. (Organometallics­ 2012 , 31, 2053) suggest that the complexation by the organozinc reagent lowers the activity of the Pd catalyst. Presumably, a similar effect also causes the rate decrease observed upon addition of ZnBr2. In contrast, added LiBr apparently counteracts the formation of Pd–Zn complexes and restores the high activity of the Pd catalyst. At longer reaction times, deactivation processes due to degradation of the S‐PHOS ligand and aggregation of the Pd catalyst come into play, thus further contributing to the appreciable complexity of the title reaction.  相似文献   

18.
In order to explore the chemistry of the bidentate ligand 2,2‐dimethylpropane‐1,3‐diyl diisocyanide and to investigate the effect of counter‐ions on the polymeric structure of (2,2‐dimethylpropane‐1,3‐diyl diisocyanide)silver(I) complexes, the title polymeric compound, [AgI(C7H10N2)]n, was synthesized by treatment of 2,2‐dimethylpropane‐1,3‐diyl diisocyanide with AgI. X‐ray powder diffraction studies show, as expected, a polymeric structure, similar to the very recently reported Cl and NO3 analogues [AgX(C7H10N2)]n (X = Cl or NO3). In the title structure, the AgI centre is bridged to two adjacent AgI neighbours by bidentate 2,2‐dimethylpropane‐1,3‐diyl diisocyanide ligands via the NC groups to form [Ag{CNCH2C(CH3)2CH2NC}]n chains. The iodide counter‐ions crosslink the AgI centres of the chains to form a two‐dimensional polymeric {[Ag{CNCH2C(CH3)2CH2NC}]I}n network. This study also shows that this bidentate ligand forms similar polymeric structures on treatment with AgX, regardless of the nature of the counter‐ion X, and also has a strong tendency to form polymeric complexes rather than dimeric or trimeric ones.  相似文献   

19.
The structures of orthorhombic (E)‐4‐(2‐{[amino(iminio)methyl]amino}vinyl)‐3,5‐dichlorophenolate dihydrate, C8H8Cl2N4O·2H2O, (I), triclinic (E)‐4‐(2‐{[amino(iminio)methyl]amino}vinyl)‐3,5‐dichlorophenolate methanol disolvate, C8H8Cl2N4O·2CH4O, (II), and orthorhombic (E)‐amino[(2,6‐dichloro‐4‐hydroxystyryl)amino]methaniminium acetate, C8H9Cl2N4O+·C2H3O2, (III), all crystallize with one formula unit in the asymmetric unit, with the molecule in an E configuration and the phenol H atom transferred to the guanidine N atom. Although the molecules of the title compounds form extended chains via hydrogen bonding in all three forms, owing to the presence of different solvent molecules, those chains are connected differently in the individual forms. In (II), the molecules are all coplanar, while in (I) and (III), adjacent molecules are tilted relative to one another to varying degrees. Also, because of the variation in hydrogen‐bond‐formation ability of the solvents, the hydrogen‐bonding arrangements vary in the three forms.  相似文献   

20.
Methyl 4‐(4‐fluorophenyl)‐6‐methyl‐2‐oxo‐1,2,3,4‐tetrahydropyrimidine‐5‐carboxylate, ( I ), was found to exhibit solvatomorphism. The compound was prepared using a classic Biginelli reaction under mild conditions, without using catalysts and in a solvent‐free environment. Single crystals of two solvatomorphs and one anhydrous form of ( I ) were obtained through various crystallization methods. The anhydrous form, C13H13FN2O3, was found to crystallize in the monoclinic space group C2/c. It showed one molecule in the asymmetric unit. The solvatomorph with included carbon tetrachloride, C13H13FN2O3·0.25CCl4, was found to crystallize in the monoclinic space group P2/n. The asymmetric unit revealed two molecules of ( I ) and one disordered carbon tetrachloride solvent molecule that lies on a twofold axis. A solvatomorph including ethyl acetate, C13H13FN2O3·0.5C4H8O2, was found to crystallize in the triclinic space group P with one molecule of ( I ) and one solvent molecule on an inversion centre in the asymmetric unit. The solvent molecules in the solvatomorphs were found to be disordered, with a unique case of crystallographically induced disorder in ( I ) crystallized with ethyl acetate. Hydrogen‐bonding interactions, for example, N—H…O=C, C—H…O=C, C—H…F and C—H…π, contribute to the crystal packing with the formation of a characteristic dimer through N—H…O=C interactions in all three forms. The solvatomorphs display additional interactions, such as C—F…N and C—Cl…π, which are responsible for their molecular arrangement. The thermal properties of the forms were analysed through differential scanning calorimetry (DSC), hot stage microscopy (HSM) and thermogravimetric analysis (TGA) experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号