首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several new two‐ligand complexes of zinc(II) with the aromatic N, N‐donor ligands 2, 2′‐bipyridine or 1, 10‐phenanthroline and one of three different α‐hydroxycarboxylates (HL′) derived of the α‐hydroxycarboxylic acids (H2L′) (2‐methyllactic, H2mL; mandelic, H2M or benzilic, H2B) were prepared. The compounds of formula [Zn(HL′)2(NN)]·nH2O (HL′ = HM, HB) were isolated as white powders and characterized by elemental analysis, IR spectroscopy and thermogravimetric analysis. The complexes of general formula [Zn(HL′)(NN)2](HL′)·nH2O (HL′ = HmL, HM) and [Zn(HB)2(NN)2], were obtained as single crystals and were characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis and X‐ray diffractometry. In all cases, the zinc atom is in a distorted octahedral environment. In [Zn(HL′)(NN)2](HL′)·nH2O the α‐hydroxycarboxylato ligands behave as bidentate chelating monoanion and an α‐hydroxycarboxylate as counterion is also present. In [Zn(HB)2(NN)2], the monoanionic benzilato ligand behaves as monodentate through one oxygen atom of the carboxylate function. The effect of the classical and no‐classical hydrogen bonding and of the π‐π and C‐H…π interactions in the 3D supramolecular arrangement of these molecular complexes is analyzed.  相似文献   

2.
Polymeric salicylatocopper(II) complexes of unusual composition [C u(X‐ sal)2( μ‐denia)(H2O)]n [denia = diethylnicotinamide, and X‐sal = 5‐methylsalicylate ( 1 ), 3‐methylsalicylate ( 2 ), 4‐methoxysalicylate ( 3 ), 3,5‐dichlorosalicylate ( 4 ) and 3,5‐dibromosalicylate ( 5 )] were synthesized and characterized. Magnetic measurements were performed in the temperature range 1.8–300 K. The structural unit of all complexes consists of a CuII atom, which is monodentately coordinated by the pair of X‐salicylate anions in trans positions. Water and the diethylnicotinamide ligand occupy the other two basal plane positions of the tetragonal pyramid. The axial positions are occupied by a diethylnicotinamide oxygen atom of neighboring structural units, thus forming a spiral polymeric structure parallel to b axis. Magnetic measurements showed that all complexes 1 – 5 exhibit a susceptibility maximum at about 6–8 K. The obtained data fit to Bleaney–Bowers equation gave singlet‐triplet energy gaps 2J = –8.60 cm–1 for 1 , 2J = –6.57 cm–1 for 2 , 2J = –8.57 cm–1 for 3 , 2J = –6.82 cm–1 for 4 , and 2J = –6.45 cm–1 for 5 . The supramolecular structure based on hydrogen bonds [described by supramolecular synthons R22(10) and R22(12)] is the pathway for antiferromagnetic interactions of the magnetically coupled pairs of copper atoms of neighboring chains within the 2D supramolecular layers. The results of the magnetic measurements suggest involvement of the COO groups in the magnetic interaction pathway for all five complexes.  相似文献   

3.
The synthesis and coordination chemistry of a saturated analogue of a “bulky‐yet‐flexible” N‐heterocyclic carbene (NHC) ligand are described. “SIPaul” is a 4,5‐dihydroimidazol‐2‐ylidene ligand with unsymmetrical aryl N‐substituents, and is one of the growing class of “bulky‐yet‐flexible” NHCs that are sufficiently bulky to stabilize catalytic intermediates, but sufficiently flexible that they do not inhibit productive chemistry at the central metal atom. Here, the synthesis of SIPaul.HCl and its complexes with copper, silver, iridium, palladium, and nickel, and its selenourea, are reported. The steric impact of the ligand is quantified using percent buried volume (% Vbur), whereas the electronic properties are probed and quantified using the Tolman Electronic Parameter (TEP) and δSe of the corresponding selenourea. This work shows that despite the often very different performance of saturated versus unsaturated carbenes in catalysis, the effect of backbone saturation on measurable properties is very small.  相似文献   

4.
A rigid imidazolate/sulfonate functionalized ligand, 6‐(4‐sulfonatopheny)imidazo[4, 5‐f]isoindole‐5, 7‐dione (SPID) was designed and used for assembling reactions with Mn2+ and Cu2+ ions. Two 2D frameworks compounds, [Mn(H‐1SPID)2(DMAC)2] ( 1 ) and [Cu(H‐2SPID)(H2O)2] · 0.7DMAC · 0.3H2O ( 2 ) (DMAC = N,N‐dimethylacetamide) were obtained. Single crystal X‐ray analyses show that 1 has a 2D (4, 4)‐net based on 4‐connected Mn2+ nodes and μ2‐coordinated H‐1SPID spacers, whereas compound 2 has a 2D (6, 3)‐net built of 3‐connected Cu2+ nodes and μ3‐coordinated H‐2SPID spacers. Additionally, the thermal behavior of 1 and 2 is presented.  相似文献   

5.
Self‐assembly of the rigid organic ligand 2‐propyl‐4,5‐dicarboxy‐1H‐imidazole ( L ) with different metal ions (Zn2+, Ni2+, Cu2+, Cd2+) led to four new complexes, namely, [M( L )(phen)] [M = Zn ( 1 ); Ni ( 2 ); Cd ( 3 )] and [Cu( L )( 4 )] (phen = 1,10‐phenanthroline). Their structures were determined by single‐crystal X‐ray diffraction analyses, and they were further characterized by elemental analysis, IR spectroscopy, and thermogravimetric analysis. Whereas compounds 1 , 2 , and 3 are discrete units, hydrogen‐bonding interactions play a vital role in these complexes. Compounds 1 and 2 form one‐dimensional (1D) and two‐dimensional (2D) structures through hydrogen‐bondinginteractions with helical character. In 1 , the hydrogen bonds (O–H ··· O) alternately bridge the MII cations of the discrete units to form a one‐dimensional (1D) infinite helical chain. Complex 2 forms a 2D helical layer through parallel hydrogen bonds (N/O–H ··· O/N) between two adjacent helical chains. In 3 , the hydrogen bonds (N–H ··· O) connect adjacent discrete units into a ten‐membered ring with extension into a one‐dimensional double‐chain supramolecular structure. Complex 4 is a two‐dimensional gridlike (4,4) topological layer which is extended to a 3D network by hydrogen bonding. The solid‐state fluorescence spectrum of complex 3 was determined.  相似文献   

6.
Copper(II) oxalate coordination polymer [{Cu4(C2O4)4(L)4}3 · {Cu3(C2O4)3(L)6}2 · 3L · 25H2O]n (L = 3,3′,5,5′‐tetramethyl‐4,4′‐bipyrazole) reveals a structure that is related to the Pt3O4 net topology. The 3D linkage is sustained with copper‐oxalate squares and copper‐bipyrazole triangles sharing vertices. The framework supports giant icosahedral cages and entraps discrete molecular octahedra formed by two molecular complexes Cu3(C2O4)3(L)6 associated by means of NH‐‐‐N hydrogen bonding. The coexistence of the discrete and 3D portions formed by the same components suggests self‐templation as a key feature of the system. Simpler copper oxalate compounds [Cu(C2O4)(L)2(H2O)] · CH3OH · 3.75H2O and [Cu2(C2O4)2(L)5] · L · 11H2O are concomitant products of the reaction mixture and they exist in the form of molecular mono‐ and binuclear complexes.  相似文献   

7.
The synthesis and molecular structure of the novel phosphonic acid 4‐tert‐Bu‐2,6‐Mes2‐C6H2P(O)(OH)2 ( 1 ) is reported. Compound 1 crystallizes in form of its monohydrate as a hydrogen‐bonded cluster ( 1·H2O )4 comprizing four phosphonic acid molecules (O···O 2.383(3)‐3.006(4) Å). Additionally, sterically hindered terphenyl‐substituted phosphorus compounds of the type 4‐tert‐Bu‐2,6‐Mes2‐C6H2PR(O)(OH) ( 5 , R = H; 7 , R = O2CC6H4‐3‐Cl; 9 , R = OEt) were prepared, which all show dimeric hydrogen‐bonded structures with O···O distances in the range 2.489(2)–2.519(3) Å. Attempts at oxidizing 5 using H2O2, KMnO4, O3, or Me3NO in order to give 1 failed. Crystallization of 5 in the presence of Me3NO gave the novel hydrogen bonded aggregate 4‐tert‐Bu‐2,6‐Mes2‐C6H2PH(O)(OH)·ONMe3 ( 6 ) showing an O–H···O distance of 2.560(4) Å.  相似文献   

8.
Two new neutral polymeric layer compounds, [Cu3(bpy)2(Hip)2(ip)2] ( 1 ) and [Cu3(phen)2(Hip)2(ip)2] ( 2 ) (bpy = 2, 2′‐bipyridine, phen = 1, 10‐phenanthroline, ip = isophthalate), have been synthesized under hydrothermal conditions and characterized by X‐ray crystallography. Complex 1 crystallizes triclinic, P1¯ (No. 2), a = 10.352(5), b = 10.859(6), c = 11.602(6)Å, α = 83.25(1), β = 84.71(1), γ = 66.19(1)°, V = 1183.5(11)Å3, Z = 1; 2 triclinic, P1¯ (No. 2), a = 10.375(1), b = 10.668(1), c = 11.758(1)Å, α = 83.179(2), β = 86.228(2), γ = 71.187(2)°, V = 1222.7(2)Å3, Z = 1. The complexes consist of trinuclcear copper units that are bridged via two ip ligands forming zigzag polymeric chains. These chains are further extended into layers via aromatic π‐π interactions as well as hydrogen bonds between the free carboxyl groups and carboxylates.  相似文献   

9.
The synthesis and crystal structures of guanidinium monofluorophosphate and hydrogen monofluorophosphates with the following cations: piperazinium, di‐ and triethylammonium, guanidinium, and dimethyluronium, are described and discussed. The structures of the acid salts consist of hydrogen‐bonded HPO3F tetrahedra, which form infinite chains or cyclic dimers. The organic cations link these units together. All of the hydrogen bond systems observed consist of short O—H···O and longer N—H···O bonds. No O—H···F or N—H···F bonds were found. The F atom avoids hydrogen acceptor positions in the structures. The thermal behavior of [NHEt3]HPO3F was also studied.  相似文献   

10.
The cobalt‐formate coordination polymers {[Co(bpyph)(HCOO)2]8}n ( 1 ) (bpyph = 1,4‐bis(2‐(4‐pyridyl)ethenyl)benzene) and {[Co(HCONH2)2(HCOO)2]}n ( 2 ) have been prepared by interaction of Co(NO3)2 · 6 H2O in formamide solution with generation of formate anion by hydrolysis of the solvent. Coordination polymer 1 reveals an unprecedented example of “molecular multi‐rod cable” architecture, in which eight single “molecular wires” {[Co(bpyph)]}n are interlinked by bridging formate anions to give infinite octameric chains. The formate groups adopt mono‐, and bi‐ and tridentate bridging and chelate modes of coordination (Co–O 1.966–2.134 Å). The coordination geometry around the cobalt atoms is essentially dominated by the demands for most effective packing of parallel situated polycyclic aromatic ligands, with extensive CH…π, or edge‐to‐face stacking interactions within the single octameric chain as well as between the closest neighbours (C…C separations within this stack are ca. 3.50 Å).  相似文献   

11.
12.
A click by any other name : Coupling bis(N‐heterocyclic carbene)s with bis(azide)s afforded a novel class of conjugated polytriazenes. These polymers were rendered electrically conductive upon doping, and fluorene‐containing variants exhibited luminescence. This adaptation of N‐heterocyclic carbene (NHC)/azide coupling chemistry to polymer synthesis reveals the potential of NHCs as building blocks for accessing polymers having useful electronic properties.

  相似文献   


13.
The coordination polymers, {[Cu(Hbidc)(2, 2′‐bpy)(H2O)] · 2H2O}n ( 1 ) and {[Mn(Hbidc)(2, 2′‐bpy) (H2O)2] · 2H2O}n ( 2 ) (H3bidc = benzimidazole‐5, 6‐dicarboxylic acid, 2, 2′‐bpy = 2, 2′‐bipyridine), were synthesized in solution and characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis (TGA), and single‐crystal X‐ray diffraction. Complexes 1 and 2 consist of different 1D chain structures. In both compounds, 2, 2′‐bpy is chelating in a bidentate manner, whereas the Hbidc ligands in complexes 1 and 2 display chelating‐bridging tridentate and bridging bidentate coordination modes. The two complexes are further extended into 3D supramolecular structures through O–H ··· O and N–H ··· O hydrogen bonds. The thermal stabilities of complexes 1 and 2 were studied by thermogravimetric analyses (TGA).  相似文献   

14.
The new ligand bis(4‐pyridylthio)methane (4‐bpytm) ( 1 ) and its complexes [CuX2(4‐bpytm)] and [CuX2(4‐bpytm)2] (X = Cl and Br) ( 2 – 5 ) have been prepared and characterized by elemental analysis, IR‐Raman, UV/Vis spectroscopy. The structures of (4‐bpytm) ( 1 ), [CuCl2(4‐bpytm)2] ( 3 ) and [CuBr2(4‐bpytm)2] ( 4 ) were determined by single‐crystal X‐ray diffraction analysis. X‐ray analysis of the 1:2 derivatives reveals that the copper atom has a distorted (4 + 2) octahedral environment. The copper atom is coordinated by four nitrogen atoms from four bridging 4‐bpytm ligands and two halogen atoms. The axial Cu–N bonds are considerably longer than the equatorial Cu–N bonds owing to JahñTeller distortion. CuX2 units are linked to each other through bridging 4‐bpytm ligands to form a 2D interpenetrated coordination polymer. The structural parameters of the 4‐bpytm ligand in these complexes were compared with those of the free ligand.  相似文献   

15.
Two copper/cobalt metal complexes, [Cu(l-cys)(2,2′-bpy)(H2O)] (1) and {[Co(l-cys)(4,4′-bpy)(H2O)]·H2O}n (2), with the N-donor ligands 2,2′-bipyridyl/4,4′-bipyridyl and the l-cysteate dianion (l-cys) have been synthesized by different reaction methods and structurally characterized. Compound 1 exists as a discrete monomeric unit in which the metal ions possess a distorted square-pyramidal coordination environment provided by nitrogen atoms from the 2,2′-bpy ligand and the amino-carboxylate group of l-cys in a chelated coordination, constituting the square base, and with a water molecule occupying the axial coordination site to complete the penta coordination. Packing and hydrogen bonding interactions of 1 reveal that the screw related monomeric units are involved in intermolecular hydrogen bonding with the formation of helical bilayers via O–H?O and N–H?O interactions. These hydrogen bonded bilayered helical nets are involved in stacking and C–H?O interactions which generate a two dimensional hydrogen bonded network in the bc-plane. Complex 2 is a two dimensional coordination polymer which is insoluble in common polar and non-polar solvents. The coordination around the metal center possesses a distorted octahedral geometry. The adjacent metal centers are bridged via the carboxylate group of the l-cys moiety in a syn–anti fashion, generating a one dimensional helical network along the b-axis. Adjacent helical chains are further pillared by the 4,4′-bpy ligand through the terminal nitrogen atoms, generating a two dimensional square grid type coordination network. Both the complexes are characterized well by various physico-chemical techniques such as CHN analysis, IR spectroscopy, PXRD and CD analysis.  相似文献   

16.
本文系统的探讨了1,3,5-丙二酸衍生物取代基(2-5),戊烷-2,4-二酮取代基(6),3,5-二甲基-1H-吡唑取代基-2,4,6-三乙基苯(7)的合成和结构。1H NMR分析表明,这些化合物在溶液中具有高度的对称性;X-单晶衍射分析确认这些化合物在固态均采取1,3,5-交替构象,即三个功能取代基团处在中心苯环平面的一边,而三个乙基则位于该中心苯环平面的另一边。分子内和分子间氢键是化合物4,5,7实现超分子自组装的主要作用力。化合物7(L)的吡唑取代基与铜离子(II)通过Cu-N的配位键作用形成笼状配合物8 (Cu3L2),在配合物8中,两配体分子7(L)采取了顺式面面相向的构象。  相似文献   

17.
Channels make up 46% of the crystal volume: A two-dimensional coordination polymer of exceptional structural regularity (see schematic drawing; tpp=tetraphenylporphyrin, tpyp=tetrapyridylporphyrin) was assembled from [MnIII(tpp)]⋅ClO4 and tpyp. The crystal packing of these polymers yields an open bulk structure with networks of perpendicular channels filled with nitrobenzene solvent molecules. Only oligomeric entities are formed by the reaction of [ZnII(tpp)] with tpyp.  相似文献   

18.
Nitrogen heterocycles represent a highly important class of compounds which are widely used in materials science, agrochemistry, and medicinal chemistry. Therefore, there is continuing interest in the development of convenient, efficient, and environmentally benign synthetic methods for the construction of nitrogen containing heterocycles. Due to its natural abundance, ease of use, and promising application in industry, the use of visible light as a driving force for chemical reactions has received considerable attention in the past few years. This account summarizes the synthesis of N‐heterocycles using visible‐light photoredox catalysis published in the last two years, according to the size and type of the formed N‐heterocyclic rings. In the context of seminal works of others in this area, a concise summary of the contributions of the authors is also offered.  相似文献   

19.
A honeycomb structure is shown by the one‐dimensional coordination polymer comprising D6h‐symmetric cucurbituril molecules and rubidium ions (see picture). The cucurbituril molecules stack atop one another and show coordination of their carbonyl groups to the rubidium ions in between. The shape and symmetry of the building blocks encourage the coordination polymer chains to be arranged in such a way as to produce an open‐framework structure with large, linear, hexagonal channels.  相似文献   

20.
A unique supramolecular framework, [Zn4(H2O)2(2,5-tdc)4(3,3'-bpe)3]n ( 1 ), was prepared by the self-assembly of Zn(NO3)2 · 6H2O, 2,5-thiophenedicarboxylic acid (2,5-H2tdc), and 1,2-bis(3-pyridyl)-ethene (3,3'-bpe) under hydrothermal conditions. The coordination network of 1 can be simplified as a (3,4)-connected dmc framework with a point symbol (4 · 82)(4 · 85). The void space of a single network of 1 is filled by mutual interpenetration of four crystallographically equivalent nets, generating a fivefold interpenetrating architecture. Interestingly, the strong hydrogen bonds between the adjoining coordination networks further connect the interpenetrating architecture into a three-dimensional supramolecular framework. Take the hydrogen bonds into consideration, the supramolecular structure of the title compound can be further regarded as an unprecedented 5-nodal framework. The thermal stability, photoluminescent and photocatalytic properties of the title compound have also been investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号