首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Objectives: Biosurfactants with anti-inflammatory activity may alleviate skin irritation caused by synthetic surfactants in cleaning products. Sophorolipid (SL) is a promising alternative to synthetic surfactants. However, there are few reports on the anti-inflammatory activity of SL and the underlying mechanism. The purpose of this work is to verify that lipopolysaccharide (LPS)-induced inflammation could be inhibited through targeting the pathway of nuclear factor-κB (NF-κB) in RAW264.7 cells. Methods: The influence of SL on cytokine release was investigated by LPS-induced RAW264.7 cells using ELISA. The quantification of the protein expression of corresponding molecular markers was realized by Western blot analysis. Flow cytometry was employed to determine the levels of Ca2+ and reactive oxygen species (ROS). The relative expression of inducible nitric oxide synthase (INOS) and cyclooxygenase-2 (COX-2) was determined by RT-PCR. An immunofluorescence assay and confocal microscope were used to observe the NF-κB/p65 translocation from the cytoplasm into the nucleus. The likely targets of SL were predicted by molecular docking analysis. Results: SL showed anti-inflammatory activity and reduced the release of inflammatory cytokines including interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and nitric oxide (NO). The experimental results show that SL suppressed the Ca2+ and ROS levels influx in the LPS-induced RAW264.7 cells and alleviated the LPS-induced expression of iNOS and COX-2, the LPS-induced translocation of NF-κB (p65) from the cytoplasm into the nucleus, and the expression of phosphorylated proteins such as p65 and IκBα. Furthermore, molecular docking analysis showed that SL may inhibit inflammatory signaling by competing with LPS to bind TLR4/MD-2 through hydrophobic interactions and by inhibiting IKKβ activation through the hydrogen bonding and hydrophobic interactions. Conclusion: This study demonstrated that SL exerted anti-inflammatory activity via the pathway of NF-κB in RAW264.7 cells.  相似文献   

3.
Inflammation is a severe topic in the immune system and play a role as pro-inflammatory mediators. In response to such inflammatory substances, immune cells release cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). Lipopolysaccharide (LPS) is known as an endotoxin in the outer membrane of Gram-negative bacteria, and it catalyzes inflammation by stimulating the secretion of inflammatory-mediated cytokines such as cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) by stimulated immune cells. Among the pathways involved in inflammation, nuclear factor kappa (NF-кB) and mitogen-activated protein kinases (MAPKs) are important. NF-kB is a diploid composed of p65 and IkBα and stimulates the pro- gene. MAPKs is a family consisting of the extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK), and p38, JNK and p38 play a role as proinflammatory mediators. Thus, we aim to determine the scutellarein (SCU) effect on LPS stimulated RAW264.7 cells. Furthermore, since scutellarein has been shown to inhibit the SARS coronavirus helicase and has been used in Chinese medicine to treat inflammatory disorders like COVID-19, it would be required to examine scutellarein’s anti-inflammatory mechanism. We identified inflammation-inducing substances using western blot with RAW264.7 cells and SCU. And we discovered that was reduced by treatment with SCU in p-p65 and p-IκBα. Also, we found that p-JNK and p-ERK were also decreased but there was no effect in p-p38. In addition, we have confirmed that the iNOS was also decreased after treatment but there is no change in the expression of COX-2. Therefore, this study shows that SCU can be used as a compound to treat inflammation.  相似文献   

4.
Punica granatum L. (Punicaceae) is a popular fruit all over the world. Owning to its enriched polyphenols, P. granatum has been widely used in treating inflammation-related diseases, such as cardiovascular diseases and cancer. Twenty polyphenols, containing nine unreported ones, named punicagranins A–I (1–9), along with eleven known isolates (10–20), were obtained from the peels. Their detailed structures were elucidated based on UV, IR, NMR, MS, optical rotation, ECD analyses and chemical evidence. The potential anti-inflammatory activities of all polyphenols were examined on a lipopolysaccharide (LPS)-induced inflammatory macrophages model, which indicated that enhancing nitric oxide (NO) production in response to inflammation stimulated in RAW 264.7 cells was controlled by compounds 1, 3, 5–8, 10, 11, 14 and 16–20 in a concentration-dependent manner. The investigation of structure–activity relationships for tannins 6–8 and 12–20 suggested that HHDP, flavogallonyl and/or gallagyl were key groups for NO production inhibitory activity. Western blotting indicated that compounds 6–8 could down-regulate the phosphorylation levels of proteins p38 MAPK, IKKα/β, IκBα and NF-κB p65 as well as inhibit the levels of inflammation-related cytokines and mediators, such as IL-6, TNF-α, iNOS and COX-2, at the concentration of 30 μM. In conclusion, polyphenols are proposed to be the potential anti-inflammatory active ingredients in P. granatum peels, and their molecular mechanism is likely related to the regulation of the p38 MAPK and NF-κB signaling pathways.  相似文献   

5.
Neocinnamomum caudatum (Lauraceae) plant is used in the traditional system of medicine and is considered a potential source of edible fruits, spices, flavoring agents and biodiesel. The leaves, bark and roots of the species are used by local communities for the treatment of inflammatory responses, such as allergies, sinusitis and urinary tract infections. However, there is no scientific evidence to support the molecular mechanism through which this plant exerts its anti-inflammatory effect. The aim of the current research was to characterize the chemical constituents of bark (NCB) and leaf (NCL) essential oil of N. caudatum and to elucidate its anti-inflammatory action in lipopolysaccharide (LPS)-treated RAW 264.7 cells. Essential oils extracted by hydrodistillation were further subjected to gas chromatography mass spectrometry (GC-MS) analysis. The major constituents in bark essential oil identified as β-pinene (13.11%), α-cadinol (11.18%) and α-pinene (10.99%), whereas leaf essential oil was found to be rich in β-pinene (45.21%), myrcene (9.97%) and α-pinene (9.27%). Treatment with NCB and NCL at a concentration of 25 µg/mL exerted significant anti-inflammatory activity by significantly reducing LPS-triggered nitric oxide (NO) production to 45.86% and 61.64%, respectively, compared to the LPS-treated group. In the LPS-treated group, the production of proinflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1β, decreased after treatment with essential oil, alleviating the mRNA levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2. The essential oil also inhibited the production of intracellular ROS and attenuated the depletion of mitochondrial membrane potential in a concentration-dependent manner. Pretreatment with NCB also reduced nuclear factor kappa-B (NF-κB)/p65 translocation and elevated the levels of endogenous antioxidant enzymes in LPS-induced macrophages. The present findings, for the first time, demonstrate the anti-inflammatory potential of both bark and leaf essential oils of N. caudatum. The bark essential oil exhibited a significantly more important anti-inflammatory effect than the leaf essential oil and could be used as a potential therapeutic agent for the treatment of inflammatory diseases.  相似文献   

6.
Persistent inflammatory reactions promote mucosal damage and cause dysfunction, such as pain, swelling, seizures, and fever. Therefore, in this study, in order to explore the anti-inflammatory effect of 6-methylcoumarin (6-MC) and suggest its availability, macrophages were stimulated with lipopolysaccharide (LPS) to conduct an in vitro experiment. The effects of 6-MC on the production and levels of pro-inflammatory cytokines (interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α) and inflammatory mediators (nitric oxide (NO), prostaglandin E2 (PGE2)) in LPS-stimulated RAW 264.7 cells were examined. The results showed that 6-MC reduced the levels of NO and PGE2 without being cytotoxic. In addition, it was demonstrated that the increase in the expression of pro-inflammatory cytokines caused by LPS stimulation, was decreased in a concentration-dependent manner with 6-MC treatment. Moreover, Western blot results showed that the protein levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), which increased with LPS treatment, were decreased by 6-MC treatment. Mechanistic studies revealed that 6-MC reduced the phosphorylation of the mitogen-activated protein kinase (MAPK) family and IκBα in the MAPK and nuclear factor-kappa B (NF-κB) pathways, respectively. These results suggest that 6-MC is a potential therapeutic agent for inflammatory diseases that inhibits inflammation via the MAPK and NF-κB pathways.  相似文献   

7.
We previously investigated the methanolic extract of Morus alba bark and characterized 11 compounds from the extract: kuwanon G (1), kuwanon E (2), kuwanon T (3), sanggenon A (4), sanggenon M (5), sanggenol A (6), mulberofuran B (7), mulberofuran G (8), moracin M (9), moracin O (10), and norartocarpanone (11). Herein, we investigated the anti-inflammatory effects of these compounds on microglial cells (BV2) and macrophages (RAW264.7). Among them, 3 and 4 markedly inhibited the lipopolysaccharide (LPS)-induced production of nitric oxide in these cells, suggesting the anti-inflammatory properties of these two compounds. These compounds inhibited the production of prostaglandin E2, interleukin-6, and tumor necrosis factor-α, and the expression of inducible nitric oxide synthase and cyclooxygenase-2 following LPS stimulation. Pretreatment with 3 and 4 inhibited the activation of the nuclear factor kappa B signaling pathway in both cell types. The compounds also induced the expression of heme oxygenase (HO)-1 through the activation of nuclear factor erythroid 2-related factor 2. Suppressing the activity of HO-1 reversed the anti-inflammatory effects caused by pretreatment with 3 and 4, suggesting that the anti-inflammatory effects were regulated by HO-1. Taken together, 3 and 4 are potential candidates for developing therapeutic and preventive agents for inflammatory diseases.  相似文献   

8.
Chloranthus oldhamii Solms (CO) is a folk medicine for treating infection and arthritis pain but its pharmacological activity and bioactive compounds remain mostly uncharacterized. In this study, the anti-inflammatory compounds of C. oldhamii were identified using an LPS-stimulated, NF-κB-responsive RAW 264.7 macrophage reporter line. Three diterpenoid compounds, 3α-hydroxy-ent-abieta-8,11,13-triene (CO-9), 3α, 7β-dihydroxy-ent-abieta-8,11,13-triene (CO-10), and decandrin B (CO-15) were found to inhibit NF-κB activity at nontoxic concentrations. Moreover, CO-9 and CO-10 suppressed the expression of IL-6 and TNF-α in LPS-stimulated RAW 264.7 cells. The inhibitory effect of CO-9 on TNF-α and IL-6 expression was further demonstrated using LPS-treated bone marrow-derived macrophages. Furthermore, CO-9, CO-10, and CO-15 suppressed LPS-triggered COX-2 expression and downstream PGE2 production in RAW 264.7 cells. CO-9 and CO-10 also reduced LPS-triggered iNOS expression and nitrogen oxide production in RAW 264.7 cells. The anti-inflammatory mechanism of the most effective compound, CO-9, was further investigated. CO-9 attenuated LPS-induced NF-κB activation by reducing the phosphorylation of IKKα/β (Ser176/180), IκBα (Ser32), and p65 (Ser534). Conversely, CO-9 did not affect the LPS-induced activation of MAPK signaling pathways. In summary, this study revealed new anti-inflammatory diterpenoid compounds from C. oldhamii and demonstrated that the IKK-mediated NK-κB pathway is the major target of these compounds.  相似文献   

9.
Biorenovation, a microbial enzyme-assisted degradation process of precursor compounds, is an effective approach to unraveling the potential bioactive properties of the derived compounds. In this study, we obtained a new compound, prunetin 4′-O-phosphate (P4P), through the biorenovation of prunetin (PRN), and investigated its anti-inflammatory effects in lipopolysaccharide (LPS)-treated RAW 264.7 macrophage cells. The anti-inflammatory effect of P4P was evaluated by measuring the production of prostaglandin-E2 (PGE2), nitric oxide (NO), which is an inflammation-inducing factor, and related cytokines such as tumor necrosis factor-α (TNFα), interleukin-1β (IL1β), and interleukin-6 (IL6). The findings demonstrated that P4P was non-toxic to cells, and its inhibition of the secretion of NO—as well as pro-inflammatory cytokines—was concentration-dependent. A simultaneous reduction in the protein expression level of pro-inflammatory proteins such as cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) was observed. Moreover, the phosphorylation of mitogen-activated protein kinases (MAPKs) such as extracellular signal-regulated kinases (ERKs), c-Jun N-terminal kinase (JNK), p38 MAPK (p38), and nuclear factor kappa B (NFκB) was downregulated. To conclude, we report that biorenovation-based phosphorylation of PRN improved its anti-inflammatory activity. Cell-based in vitro assays further confirmed that P4P could be applied in the development of anti-inflammatory therapeutics.  相似文献   

10.
Luteolin (LT), present in most plants, has potent anti-inflammatory properties both in vitro and in vivo. Furthermore, some of its derivatives, such as luteolin-7-O-glucoside, also exhibit anti-inflammatory activity. However, the molecular mechanisms underlying luteolin-3′-O-phosphate (LTP)-mediated immune regulation are not fully understood. In this paper, we compared the anti-inflammatory properties of LT and LTP and analyzed their molecular mechanisms of action; we obtained LTP via the biorenovation of LT. We investigated the anti-inflammatory activities of LT and LTP in macrophage RAW 264.7 cells. We confirmed from previously reported literature that LT inhibits the production of nitric oxide and prostaglandin E2, as well as the expression of inducible NO synthetase and cyclooxygenase-2. In addition, expressions of inflammatory genes and mediators, such as tumor necrosis factor-α, interleukin-6, and interleukin-1β, were suppressed. LTP showed anti-inflammatory activity similar to LT, but better anti-inflammatory activity in all the experiments, while also inhibiting mitogen-activated protein kinase and nuclear factor-kappa B more effectively than LT. At a concentration of 10 μM, LTP showed differences of 2.1 to 44.5% in the activity compared to LT; it also showed higher anti-inflammatory activity. Our findings suggest that LTP has stronger anti-inflammatory activity than LT.  相似文献   

11.
Colitis is not fully curable, although currently, some treatment options are being adopted. In this study, we investigated the effects of pineapple leaf phenols (PLPs), natural phenol products from pineapple leaves, on DSS-induced colitis in mice. The results showed that PLPs dramatically decreased the inflammatory response by inhibiting NF-κB activation and the secretion of pro-inflammatory factors. Moreover, PLPs provided protection against DSS-induced acute colitis by maintaining epithelial integrity. Caffeic and P-coumaric acids had similar effects and could be the active components responsible for PLPs’ effect on colitis. These results indicate that the oral administration of PLPs might be considered as a therapeutic strategy in the treatment of patients with colitis. However, further research on clinical applications and the exact effect of PLPs on colitis is required.  相似文献   

12.
The extracts of Schisandra chinensis (Turcz.) Baill. (Schisandraceae) have various therapeutic effects, including inflammation and allergy. In this study, gomisin M2 (GM2) was isolated from S. chinensis and its beneficial effects were assessed against atopic dermatitis (AD). We evaluated the therapeutic effects of GM2 on 2,4-dinitrochlorobenzene (DNCB) and Dermatophagoides farinae extract (DFE)-induced AD-like skin lesions with BALB/c mice ears and within the tumor necrosis factor (TNF)-α and interferon (IFN)-γ-stimulated keratinocytes. The oral administration of GM2 resulted in reduced epidermal and dermal thickness, infiltration of tissue eosinophils, mast cells, and helper T cells in AD-like lesions. GM2 suppressed the expression of IL-1β, IL-4, IL-5, IL-6, IL-12a, and TSLP in ear tissue and the expression of IFN-γ, IL-4, and IL-17A in auricular lymph nodes. GM2 also inhibited STAT1 and NF-κB phosphorylation in DNCB/DFE-induced AD-like lesions. The oral administration of GM2 reduced levels of IgE (DFE-specific and total) and IgG2a in the mice sera, as well as protein levels of IL-4, IL-6, and TSLP in ear tissues. In TNF-α/IFN-γ-stimulated keratinocytes, GM2 significantly inhibited IL-1β, IL-6, CXCL8, and CCL22 through the suppression of STAT1 phosphorylation and the nuclear translocation of NF-κB. Taken together, these results indicate that GM2 is a biologically active compound that exhibits inhibitory effects on skin inflammation and suggests that GM2 might serve as a remedy in inflammatory skin diseases, specifically on AD.  相似文献   

13.
14.
Oxidative stress (OS) and c-Jun N-terminal kinase (JNK) are both key indicators implicated in neuro-inflammatory signalling pathways and their respective neurodegenerative diseases. Drugs targeting these factors can be considered as suitable candidates for treatment of neuronal dysfunction and memory impairment. The present study encompasses beneficial effects of a naturally occurring triterpenoid, friedelin, against scopolamine-induced oxidative stress and neurodegenerative pathologies in mice models. The treated animals were subjected to behavioural tests i.e., Y-maze and Morris water maze (MWM) for memory dysfunction. The underlying mechanism was determined via western blotting, antioxidant enzymes and lipid profile analyses. Molecular docking studies were carried out to predict the binding modes of friedelin in the binding pocket of p-JNK protein. The results reveal that scopolamine caused oxidative stress by (1) inhibiting catalase (CAT), peroxidase enzyme (POD), superoxide dismutase (SOD), and reduced glutathione enzyme (GSH); (2) the up-regulation of thiobarbituric acid reactive substances (TBARS) in mice brain; and (3) affecting the neuronal synapse (both pre- and post-synapse) followed by associated memory dysfunction. In contrast, friedelin administration not only abolished scopolamine-induced oxidative stress, glial cell activation, and neuro-inflammation but also inhibited p-JNK and NF-κB and their downstream signaling molecules. Moreover, friedelin administration improved neuronal synapse and reversed scopolamine-induced memory impairment accompanied by the inhibition of β-secretase enzyme (BACE-1) to halt amyloidogenic pathways of amyloid-β production. In summary, all of the results show that friedelin is a potent naturally isolated neuro-therapeutic agent to reverse scopolamine-induced neuropathology, which is characteristic of Alzheimer’s disease.  相似文献   

15.
A series of 1,7-diphenyl-1,4-heptadien-3-ones with various substituents (HO-, CH3O-, CH3-, Cl-) on the phenyl rings were synthesized and evaluated for anti-neuroinflammatory effects in LPS-stimulated BV2 microglia. The pharmacological results showed that the target compounds bearing methoxy groups greatly inhibited LPS-induced NO release, and that the active compounds CU-19 and CU-21 reduced the level of NO, TNF-α, IL-6 and PGE-2, downregulated the expression of COX-2 and iNOS in LPS-stimulated BV2 cells. A study of the mechanism of action revealed that CU-19 and CU-21 inhibited the nuclear translocation of NF-κB and phosphorylation of MAPKs (ERK, JNK, and p38). A preliminary pharmacokinetic study in rats revealed that the pharmacokinetic properties of CU-19 and CU-21 were dramatically ameliorated in comparison with the pharmacokinetic properties of curcumin.  相似文献   

16.
Chronic inflammation is commonly accompanied by the stimulation of matrix metalloproteinases (MMPs) production and the degradation of the extracellular matrix. The overexpression of MMP-9 (Gelatinase B) highly participates in the progression of pathetic cardiac remodeling and liver cancer metastasis. Panax notoginseng (Burkill) F. H. Chen (Sanqi), a widely used traditional Chinese medicinal herb, shows myocardial protective and anti-tumor effects. In this study, we examined the inhibitory effect of different PNG extracts on tumor necrosis factor (TNF)-α-induced MMP-9 expression in cardiac myoblast H9c2 cells. Using a bioassay-guided fractionation scheme, the most active extract was fractionated by silica gel column chromatography and high-performance liquid chromatography until an active compound was obtained. The compound was identified as Ginsenoside Rb1 by nuclear magnetic resonance. Ginsenoside Rb1 inhibited TNF-α-induced MMP-9 production in both H9c2 and liver carcinoma HepG-2 cells. Interestingly, it did not affect the MMP-2 (Gelatinase A) level and the cell proliferation of the two cell lines. The inhibitory effects of Ginsenoside Rb1 may be due to its modulation of double-strand RNA-dependent protein kinase and nuclear factor kappa B signaling pathways. The results reveal the potential use of Ginsenoside Rb1 for the treatment of inflammatory and MMP-9-related cardiac remodeling and metastasis of hepatocellular carcinomas.  相似文献   

17.
Alzheimer’s disease (AD) is a severe neurodegenerative disorder. AD is pathologically characterized by the formation of intracellular neurofibrillary tangles, and extracellular amyloid plaques which were comprised of amyloid-beta (Aβ) peptides. Aβ induces neurodegeneration by activating microglia, which triggers neurotoxicity by releasing various inflammatory mediators and reactive oxygen species (ROS). Nuclear factor-kappa B (NF-κB) is expressed in human tissues including the brain and plays an important role in Aβ-mediated neuronal inflammation. Thus, the identification of molecules that inhibit the NF-κB pathway is considered an attractive strategy for the treatment and prevention of AD. Isoorientin (3′,4′,5,7-Tetrahydroxy-6-C-glucopyranosyl flavone; ISO), which can be extracted from several plant species, such as Philostachys and Patrinia is known to have various pharmacological activities such as anticancer, antioxidant, and antibacterial activity. However, the effect of ISO on Aβ-mediated inflammation and apoptosis in the brain has yet to be elucidated. In the present study, we investigated whether ISO regulated Aβ-induced neuroinflammation in microglial cells and further explored the underlying mechanisms. Our results showed that ISO inhibited the expression of iNOS and COX-2 induced by Aβ25–35. And, it inhibited the secretion of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). In addition, ISO reduced the ROS production in Aβ25–35-induced BV2 cells and inhibited NF-κB activation. Furthermore, ISO blocked Aβ25–35-induced apoptosis of BV2 cells. Based on these findings, we suggest that ISO represents a promising therapeutic drug candidate for the treatment and prevention of AD.  相似文献   

18.
Microglia play a significant role in immune defense and tissue repair in the central nervous system (CNS). Microglial activation and the resulting neuroinflammation play a key role in the pathogenesis of neurodegenerative disorders. Recently, inflammation reduction strategies in neurodegenerative diseases have attracted increasing attention. Herein, we discovered and evaluated the anti-neuroinflammatory potential of compounds from the Antarctic fungi strain Aspergillus sp. SF-7402 in lipopolysaccharide (LPS)-stimulated BV2 cells. Four metabolites were isolated from the fungi through chemical investigations, namely, 5-methoxysterigmatocystin (1), sterigmatocystin (2), aversin (3), and 6,8-O-dimethylversicolorin A (4). Their chemical structures were elucidated by extensive spectroscopic analysis and HR-ESI-MS, as well as by comparison with those reported in literature. Anti-neuroinflammatory effects of the isolated metabolites were evaluated by measuring the production of nitric oxide (NO), tumor necrosis factor (TNF)-α, and interleukin (IL)-6 in LPS-activated microglia at non-cytotoxic concentrations. Sterigmatocystins (1 and 2) displayed significant effects on NO production and mild effects on TNF-α and IL-6 expression inhibition. The molecular mechanisms underlying this activity were investigated using Western blot analysis. Sterigmatocystin treatment inhibited NO production via downregulation of inducible nitric oxide synthase (iNOS) expression in LPS-stimulated BV2 cells. Additionally, sterigmatocystins reduced nuclear translocation of NF-κB. These results suggest that sterigmatocystins present in the fungal strain Aspergillus sp. are promising candidates for the treatment of neuroinflammatory diseases.  相似文献   

19.
The aim of the research was to determine the protective effect and mechanism of Pteris wallichiana J. Agardh extract (PWE) on DSS-induced ulcerative colitis (UC) in mice. In this research, PWE is rich in flavonoids and diterpenoids by UPLC-MS/MS analysis. In LPS-induced RAW264.7 cells, PWE reduced the productions of inflammatory factors (i.e., NO, TNF-α, IL-6, and IL-1β). In DSS-induced UC in mice, PWE improved disease activity index (DAI) score, attenuated oxidative stress by decreasing MPO and MDA activities and activating GSH and SOD levels, and inhibited TNF-α, IL-6, and IL-1β expressions in the colonic tissues. PWE also improved the intestinal barrier by upregulating the expressions of tight junction proteins, including occludin and ZO-1. Moreover, PWE extract alleviated intestinal inflammation by suppressing the TLR4/MyD88/NF-κB signaling pathway. Conclusion: PWE can alleviate DSS-induced UC in mice by increasing the expressions of intestinal tight junction proteins and inhibiting the TLR4/NF-κB inflammatory pathway.  相似文献   

20.
Polyopes affinis is a red algal species commonly found on the South coast and near Jeju Island, Korea. This study aimed to determine whether P. affinis extracts can inhibit the pathogenesis of T-helper-2 (Th2)-mediated inflammation in a human keratinocyte cell line of atopic dermatitis (AD). Cells were incubated with 10 ng/mL of interferon gamma (IFN-γ) and 10 ng/mL of tumor necrosis factor-alpha (TNF-α) at various concentrations of PAB (10, 30, and 60 µg/mL) and PAA (100, 500, and 1000 µg/mL) extracts. A gene-ontology (GO)-enrichment analysis revealed that PAB significantly enriched the genes associated with biological processes such as cell adhesion, immune response, inflammation, and chemokine-mediated pathways. PAB suppressed the expression of the secretory proteins and mRNAs that are associated with the thymus and the production of activation-regulated chemokines (TARC/CCL17) and macrophage-derived chemokines (MDC/CCL22). The effect of the extract on mitogen-activated protein kinases (MAPKs) was related to its inhibition of TARC/CCL17 and MDC/CCL22 production by blocking NF-κB and STAT1 activation. These results suggest that seaweed extract may improve AD by regulating pro-inflammatory chemokines. In conclusion, we first confirmed the existence of phloroglucinol, a polyphenol formed from a precursor called phlorotannin, which is present in PAB, and this result proved the possibility of PAB being used as a treatment for AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号