首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Replication of microstructures from a mold onto a curved surface is difficult. The conformal contact between the mold and the substrate has to be ensured. The present study proposes an innovative mechanism, which employs an electromagnetic disk to provide magnetic force and a PDMS flexible mold with a layer compounded magnetic powder. This mechanism provides not only the gradual contact from center to edge to avoid air entrapment but also conformal contact between the mold and the substrate during the imprinting operation. A system based on this electromagnetic soft imprinting technology has been implemented, and imprinting to replicate microstructures from the mold onto a curved surface has been carried out. The results reveal that the PDMS magnetic mold and the electromagnetic disk‐controlled magnetic force can successfully perform the imprinting and accurately replicate the microstructures onto the large‐area, curved surface glass. The PDMS flexible magnetic mold incorporated with the magnetic disk can be employed to achieve the conformal contact between the mold and the substrate. In addition, due to the low surface free energy of the PDMS, the de‐molding without sticking can be easily accomplished. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
This study proposed a novel technology, which uses exposed technology with ultraviolet light‐emitting‐diode (UV‐LED) arrays and the polydimethylsiloxane (PDMS) magnetic flexible soft mold imprint technology, to develop exposed equipments with UV‐LED arrays. This study used magnetic soft mold imprint technology to replicate the structure of microlens, providing a more effective alternative for imprint technology and application. The measurement results showed that PDMS with magnetic iron powder can precisely cast mold to replicate the structures of microlens. Electromagnetic plates were used to control even imprinting with magnetic force, in order to fill the mold of micro‐structure of the photo‐resist. Magnetic iron powder was added to PDMS to produce composite material, which can effectively avoid the transformation of pure PDMS during soft mold imprinting, and increase mechanical strength. Magnetic PDMS soft mold is easy to make, and the casting time is short, so that costs can be effectively reduced. Also with advantages of less free energy on its surface, and unlikely to adhere to the photo‐resist during imprinting, it can be combined with electromagnetic plates evenly to control the magnetic soft mold. This imprinting technology is a big advantage to the production process of micro‐structures during imprinting. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Wavelength limitation and diffraction of light are the bottlenecks encountered in the production of structures by conventional lithography. Nano‐imprinting has been a potential process for mass production of nanometer structures at low cost. This paper reports an innovative process to replicate the ridge‐shaped microstructures on the silicon mold onto the photoresist using gas‐assisted pressing mechanism and soft mold. The microstructures on the silicon mold are replicated unto PC films. The soft mold is obtained by casting the PDMS with the PC film as templates, PDMS mold and UV‐curable photoresist are brought into contact, and are pressurized by gas and cured by UV‐light at the same time. After curing, structures for optical wave guilding can be obtained, In this process, through the control of gas pressure, the residual layer of the ridge‐shaped component for light guilding can eliminated. Etching is no longer needed to get rid of the residual layer. This process is effective for mass production for replication of microstructures at low cost. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
This study proposed an innovative imprinting process technology using an elastic auxiliary air bag imprinting mechanism, combined with poly(dimethylsiloxane) (PDMS) soft mold and UV–LED array photocuring equipment, to evenly imprint and reproduce a micro‐lens mold into a gradient micro‐lens structure in order to achieve linear gradient in micro‐structures. The structure defined by the proposed process technology is more continuous and smoother than that of the current semi‐conductor gray scale photomasking process technology. The process is simpler, faster, and less expensive and is a more effective option for satisfying the formation requirements of different structural heights. This study used pressure‐sensitive film to test and discuss gradient imprint force distribution. The test results suggested that different spring constants led to tilt impressions, which caused the PDMS soft mold to contact with the substrate surface at different pressures. The color depth distribution of the pressure‐sensitive film testing results indicated that the spring constant and pressure distribution were somewhat correlated. Hence, the height of structural formation can be controlled by different spring constants. Finally, SEM and surface profiler measurements suggested that different spring constants can result in different tilt degrees of the imprinting platform of air bag imprinting applications for the imprinting and reproduction of smooth, continuous micro‐lens array structures of different heights. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Due to the limitations on the choice of wavelengths available for light source, nanograde structures are facing technological bottlenecks and their method of preparation using current lithography and imaging technology is extremely costly. The idea is thus born to develop a nanopressuring and manufacturing technology, in order to further develop a low‐cost and more reliable technology to manufacture nanodevices in full scale. This study combines the characteristics of soft lithography, photo‐resist, and gas‐assisted pressuring, as well as studies the use of gas‐assisted pressuring and soft mold to emboss photo‐resist to manufacture optical waveguide devices, such that the nanopressuring technology may be more mature. Study results show that polydimethylsiloxane (PDMS) is able to accurately emboss and replicate nanograde buried waveguide structures, by using even pressure gas to achieve full contact with the surface of the substrate thus greatly increasing the effective pressuring area. Also, PDMS soft molds are easier to make with short embossing time to effectively reduce cost. Another advantage of combining gas‐assisted pressuring with PDMS soft molds in the manufacturing process is that PDMS soft molds possess low free energy on the surface and are difficult for resist to adhere. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
With the combined surface imprinting technique and immobilized template strategy, molecularly imprinted magnetic nanoparticles were successfully prepared and coupled with high‐performance liquid chromatography to selectively separate and determine gallic acid from the pomegranate rind. On the surface of carboxyl‐functionalized magnetic nanospheres, thin imprinting shells were formed using dopamine as monomer and crosslinker. The characteristics, polymerization conditions, and adsorption performances of the resultant nanomaterials were investigated in detail. In addition of good crystallinity, satisfactory magnetism, and uniform morphology of the obtained polymers, they had rapid binding kinetics, high adsorption capacity, and favorable reusability. In the mixed solution of four hydroxybenzoic acids, the prepared nanomaterials have an excellent selectivity to gallic acid with an imprinting factor of as high as 17.5. Therefore, the polymers have great potentials in specific extraction and enrichment of gallic acid from the complex natural resources.  相似文献   

7.
沙林酸印迹聚邻苯二胺纳米膜制备及结构表征   总被引:9,自引:0,他引:9  
采用电化学聚合法合成了对有机磷毒剂沙林具有特异识别的聚邻苯二胺(PPD)分子印迹纳米膜(iPPD).利用石英晶体微天平(QCM)证实了印迹效应的存在,并用循环伏安法(CV)、AFM、XPS进行了系统的结构表征.结果表明,分子印迹膜的膜厚约20 nm,膜的表面呈“石林”状,疏松多孔,具有良好的吸附性能.分子印迹主要影响聚合物的三维排列,而聚合物的化学组成没有发生改变.该种分子印迹纳米膜在选择性检测军用毒剂沙林中具有良好的应用前景.  相似文献   

8.
An efficient fabrication technique for large area periodic metallic split-ring arrays has been demonstrated by the combination of tilted nanoimprint lithography and nanotransfer imprinting. The feature size of the split-rings can be adjusted by varying the key geometry parameters of the original imprinting mold. Due to the flexible nature of PDMS molds, these arrays can be patterned on curved surfaces. The molds for nanoimprint lithography and nanotransfer imprinting can be used multiple times without a loss of fidelity.  相似文献   

9.
The fabrication of patterned microstructures in poly(dimethylsiloxane) (PDMS) is a prerequisite for soft lithography. Herein, curvilinear surface relief microstructures in PDMS are fabricated through a simple three‐stage approach combining microcontact printing (μCP), selective surface wetting/dewetting and replica molding (REM). First, using an original PDMS stamp (first‐generation stamp) with linear relief features, a chemical pattern on gold substrate is generated by μCP using hexadecanethiol (HDT) as an ink. Then, by a dip‐coating process, an ordered polyethylene glycol (PEG) polymer‐dot array forms on the HDT‐patterned gold substrate. Finally, based on a REM process, the PEG‐dot array on gold substrate is used to fabricate a second‐generation PDMS stamp with microcavity array, and the second‐generation PDMS stamp is used to generate third‐generation PDMS stamp with microbump array. These fabricated new‐generation stamps are utilized in μCP and in micromolding in capillaries (MIMIC), allowing the generation of surface micropatterns which cannot be obtained using the original PDMS stamp. The method will be useful in producing new‐generation PDMS stamps, especially for those who want to use soft lithography in their studies but have no access to the microfabrication facilities.  相似文献   

10.
Summary: A soft‐lithographic imprinting approach to fabricate super‐hydrophobic surfaces has been developed in this work. In this process, fresh lotus leaves were used as masters and PDMS stamps were prepared by replica molding against the lotus‐leaf surfaces. By using the stamps and an epoxy‐based azo polymer solution as “ink”, the mimicked lotus‐leaf surfaces made of the polymer were fabricated by pressing the featured faces of the stamps against “inked” substrates and drying under a proper condition after peeling off the stamps. The lotus‐leaf‐like surfaces show super‐hydrophobic characteristics with the water contact angle higher than 150° and contact angle hysteresis less than 3°.

SEM images of lotus‐leaf‐like papillary structures on the imprinted surface.  相似文献   


11.
The morphology of thin, selectively imprinted films of Nylon‐6 was investigated by scanning force microscopy. Four amino acids were used as template molecules in the spin‐cast films. Film thickness ranged from 2 µm to 500 nm, depending on the nylon and template concentration in the casting solution. The thin‐film properties, including the presence of nanometer‐ to micrometer‐sized pores, are clearly associated with the imprinting process. The larger features observed by scanning force microscopy are attributed to amino acid clustering during the casting process. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
Yun KS  Yoon E 《Lab on a chip》2008,8(2):245-250
This paper demonstrates a new method of implementing complex microchannels in PDMS, which is simply constructed using three-dimensional photoresist structures as a master mold for the PDMS replica process. The process utilizes UV-insensitive LOR resist as a sacrificial layer to levitate the structural photoresist. In addition, the thickness of photoresist structures can be controlled by multi-step UV exposure. By using these techniques, various three-dimensional photoresist structures were successfully implemented, including the recessed cantilevers, suspended bridges, and the complex plates with micro-pits or micro-villi. We demonstrate that the three-dimensional photoresist structures are applicable to implementing complex multiple microchannels in PDMS by using the PDMS replica method.  相似文献   

13.
A protein imprinting approach for the synthesis of core–shell structure nanoparticles with a magnetic core and molecularly imprinted polymer (MIP) shell was developed using a simple distillation–precipitation polymerization method. In this work, Fe3O4 magnetic nanoparticles were first synthesized through a solvothermal method and then were conveniently surface‐modified with 3‐(methacryloyloxy)propyltrimethoxylsilane as anchor molecules to donate vinyl groups. Next a high‐density MIP shell was coated onto the surface of the magnetic nanoparticles by the copolymerization of functional monomer acrylamide (AAm), cross‐linking agent N,N′‐methylenebisacrylamide (MBA), the initiator azodiisobutyronitrile (AIBN), and protein in acetonitrile heated at reflux. The morphology, adsorption, and recognition properties of the magnetic molecularly imprinted nanoparticles were investigated by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM), and rebinding experiments. The resulting MIP showed a high adsorption capacity (104.8 mg g?1) and specific recognition (imprinting factor=7.6) to lysozyme (Lyz). The as‐prepared Fe3O4@Lyz‐MIP nanoparticles with a mean diameter of 320 nm were coated with an MIP shell that was 20 nm thick, which enabled Fe3O4@Lyz‐MIP to easily reach adsorption equilibrium. The high magnetization saturation (40.35 emu g?1) endows the materials with the convenience of magnetic separation under an external magnetic field and allows them to be subsequently reused. Furthermore, Fe3O4@Lyz‐MIP could selectively extract a target protein from real egg‐white samples under an external magnetic field.  相似文献   

14.
The preparation of molecularly imprinted core–shell magnetic nanoparticles and their subsequent use in the solid‐phase extraction of thiabendazole from citrus sample extracts is described. Molecularly imprinted core–shell magnetic nanoparticles were prepared by the precipitation copolymerization of the imprinting polymerization mixture on the surface of vinyl‐modified silica magnetic nanoparticles and were characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The obtained molecularly imprinted core–shell magnetic nanoparticles exhibited a high selectivity for thiabendazole and were easily collected and separated by an external magnetic field without additional centrifugation or filtration steps. Under optimum conditions, a magnetic molecularly imprinted solid‐phase extraction method was developed allowing the extraction of thiabendazole from citrus sample extracts and final determination by high‐performance liquid chromatography with fluorescence detection. The detection limit was 0.2 mg/kg, far lower than the maximum residue limit established within the European Union for thiabendazole in citrus samples.  相似文献   

15.
A UV-based imprint lithography method is used for the direct surface structuring of hydrogel-based biomaterials, which are prepared from a family of tailor-made star poly(ethylene glycol) formulations. Bulk star poly(ethylene glycol) (PEG) hydrogels are fabricated by cross-linking acrylate-functionalized star PEG macromolecules. Cross-linking is achieved by radical reactions initiated by UV irradiation. This UV-curable star PEG formulation allows templating of mold structures to yield a stable, stand-alone, elastomeric replica of the mold. In particular, when a secondary, soft mold is used that consists of a perfluorinated elastomer with inherent excellent release properties, nanometer-sized features (down to 100 nm) can be imprinted without specialized equipment. The applied UV-based imprint lithography is a fast and simple technique to employ for the direct topographic structuring of bulk PEG-based biomaterials. The UV-based imprinting into the star PEG prepolymer by means of a perfluorinated, soft mold can be carried out on the bench top, while nanoscale resolution is demonstrated.  相似文献   

16.
A robust synthesis for magnetic CoFe2O4 nanoparticles via a hydrothermal technique was investigated. The prepared magnetic nanoparticles were characterized using powder X‐ray diffraction, scanning, transmission and high‐resolution transmission electron microscopies, energy‐dispersive X‐ray and infrared spectroscopies, thermogravimetric analysis and vibrating sample magnetometry. Based on the obtained data, the prepared powder was composed of ultrafine particles in nanometer size range with highly homogeneous spherical shape and elemental composition. Moreover, the prepared magnetic CoFe2O4 nanoparticles were used as an efficient catalyst for green synthesis of tetrahydropyridines and pyrrole derivatives in excellent yields, with easy work‐up and purification of products by non‐chromatographic methods. The catalyst can be recovered for subsequent reactions and reused without any appreciable loss of activity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
The current achievements in magnetic transmission soft X-ray microscopy will be reviewed. The magnetic contrast is given by X-ray magnetic circular dichroism (X-MCD), i.e., the dependence of the absorption coefficient of circularly polarized X rays on the projection of the magnetization in a ferromagnetic system onto the photon propagation direction. X-MCD contrast can reach, e.g., at L2,3 edges in transition metals, large values up to 50%. Combined with a soft X-ray microscope where Fresnel zone plates acting as optical elements provide a lateral resolution down at 25 nm, it allows for imaging magnetic microstructures. Specific features of this photon-based technique are the recording of images in varying external magnetic fields, an inherent chemical specificity, a high sensitivity to thin magnetic layers, due to the large contrast, and the possibility to distinguish between in-plane and out-of plane contributions. In this report, recent results obtained with the XM-1 microscope at the ALS (Berkeley/CA) demonstrate the broad applicability of this novel experimental technique to both fundamental and technological relevant issues in nanomagnetism. The future potential will be briefly outlined.  相似文献   

18.
张慧  何华  李洁  李卉  姚誉阳 《化学进展》2011,23(10):2140-2150
分子印迹分离技术通过模拟抗体-抗原相互作用原理,专一地与目标分子互补性结合,从而将目标分子与杂质分离,是一种非常具有发展前景的分离技术。传统的分子印迹技术通常是在有机相中制备对印迹分子具有选择性的印迹聚合物,然而分子印迹技术的实际应用环境大多是水相体系。近年来,分子印迹水相分离技术受到了科学工作者的广泛关注。本文分别从以下几个方面总结了分子印迹水相分离技术的最新研究进展:水相中分子印迹聚合物的设计原理与合成方法;印迹聚合物在水相中的作用机制;印迹水相分离技术在分析化学中的应用。最后讨论了该项技术现存的问题,并对其未来发展进行了展望。  相似文献   

19.
Polystyrene (PS), a standard material for cell culture consumable labware, was molded into microstructures with high fidelity of replication by an elastomeric polydimethylsiloxane (PDMS) mold. The process was a simple, benchtop method based on soft lithography using readily available materials. The key to successful replica molding by this simple procedure relies on the use of a solvent, for example, gamma-butyrolactone, which dissolves PS without swelling the PDMS mold. PS solution was added to the PDMS mold, and evaporation of the solvent was accomplished by baking the mold on a hotplate. Microstructures with feature sizes as small as 3 μm and aspect ratios as large as 7 were readily molded. Prototypes of microfluidic chips made from PS were prepared by thermal bonding of a microchannel molded in PS with a flat PS substrate. The PS microfluidic chip displayed much lower adsorption and absorption of hydrophobic molecules (e.g. rhodamine B) compared to a comparable chip created from PDMS. The molded PS surface exhibited stable surface properties after plasma oxidation as assessed by contact angle measurement. The molded, oxidized PS surface remained an excellent surface for cell culture based on cell adhesion and proliferation. To demonstrate the application of this process for cell biology research, PS was micromolded into two different microarray formats, microwells and microposts, for segregation and tracking of non-adherent and adherent cells, respectively. The micromolded PS possessed properties that were ideal for biological and bioanalytical needs, thus making it an alternative material to PDMS and suitable for building lab-on-a-chip devices by soft lithography methods.  相似文献   

20.
Aligned polymer microstructures in the field of biomaterials, semiconductors, and ion‐conductive membranes expand steadily. Here, an alternative aligned polybenzimidazole (WM PBI) microstructures fabrication strategy based on the utilization of a weak magnetic field (0.3 T) via the solvent casting method is demonstrated. The anisotropic alignment is induced by the interaction of the π‐electron‐rich structure with the magnetic field. A ripple‐like structure was observed in the field‐emission scanning electron microscopy image for the WM PBI membrane, which depicted the successful alignment of the PBI structure toward magnetic field direction. Electrochemical studies revealed the bulk resistance of WM PBI with only 13.71 × 103 Ω compared to the unaligned PBI (WOM PBI) (63.01 × 103 Ω). WM PBI marked as the highest proton conductivity of 610.66 × 10?6 S cm?1, and it was proven that the external magnetic field does bring the impact toward the augmentation of the proton conductivity, which is useful in various future generation applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号