首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystal structures of the two title (E)‐stilbazolium halogenates, C20H17ClNO+·Cl and C20H17BrNO+·Br, are isomorphous, with an isostructurality index of 0.985. The azastyryl fragments are almost planar, with dihedral angles between the benzene and pyridine rings of ca 4.5°. The rings of the benzyl groups are, in turn, almost perpendicular to the azastyryl planes, with dihedral angles larger than 80°. The cations and anions are connected by O—H...X (X = halogen) hydrogen bonds. The halide anions are `sandwiched' between the charged pyridinium rings of neighbouring molecules, and weak C—H...O hydrogen bonds and C—H...X and C—H...π interactions also contribute to the crystal structures.  相似文献   

2.
Two organic–inorganic hybrid compounds have been prepared by the combination of the 4‐[(E)‐2‐(pyridin‐1‐ium‐2‐yl)ethenyl]pyridinium cation with perhalometallate anions to give 4‐[(E)‐2‐(pyridin‐1‐ium‐2‐yl)ethenyl]pyridinium tetrachloridocobaltate(II), (C12H12N2)[CoCl4], (I), and 4‐[(E)‐2‐(pyridin‐1‐ium‐2‐yl)ethenyl]pyridinium tetrachloridozincate(II), (C12H12N2)[ZnCl4], (II). The compounds have been structurally characterized by single‐crystal X‐ray diffraction analysis, showing the formation of a three‐dimensional network through X—H...ClnM (X = C, N+; n = 1, 2; M = CoII, ZnII) hydrogen‐bonding interactions and π–π stacking interactions. The title compounds were also characterized by FT–IR spectroscopy and thermogravimetric analysis (TGA).  相似文献   

3.
A simple and efficient synthesis of novel 2‐heteroaryl‐substituted 1H‐indole‐2‐carboxylates and γ‐carbolines, compounds 1 – 3 , from methyl 2‐(2‐methoxy‐2‐oxoethyl)‐1‐methyl‐1H‐indole‐3‐carboxylate ( 4 ) by the enaminone methodology is presented.  相似文献   

4.
It is possible that fluorous compounds could be utilized as directing forces in crystal engineering for applications in materials chemistry or catalysis. Although numerous fluorous compounds have been used for various applications, their structures in the solid state remains a lively matter for debate. The reaction of 4‐[(2,2,2‐trifluoroethoxy)methyl]pyridine with HX (X = I or Cl) yielded new fluorous ponytailed pyridinium halide salts, namely 4‐[(2,2,2‐trifluoroethoxy)methyl]pyridinium iodide, C8H9F3NO+·I, (1), and 4‐[(2,2,2‐trifluoroethoxy)methyl]pyridinium chloride, C8H9F3NO+·Cl, (2), which were characterized by IR spectroscopy, multinuclei (1H, 13C and 19F) NMR spectroscopy and single‐crystal X‐ray diffraction. Structure analysis showed that there are two types of hydrogen bonds, namely N—H…X and C—H…X. The iodide anion in salt (1) is hydrogen bonded to three 4‐[(2,2,2‐trifluoroethoxy)methyl]pyridinium cations in the crystal packing, while the chloride ion in salt (2) is involved in six hydrogen bonds to five 4‐[(2,2,2‐trifluoroethoxy)methyl]pyridinium cations, which is attributed to the smaller size and reduced polarizability of the chloride ion compared to the iodide ion. In the IR spectra, the pyridinium N—H stretching band for salt (1) exhibited a blue shift compared with that of salt (2).  相似文献   

5.
The tin atom in the title compound is in a distorted trigonal bipyramidal geometry and forms a five‐ and six‐membered chelate rings with the tridentate ligand. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
The toxicity studies of free 5‐[(E)‐2‐(aryl)‐1‐diazenyl]‐2‐hydroxybenzoic acid and 2‐[(E)‐2‐(3‐formyl‐4‐hydroxyphenyl)‐1‐diazenyl]benzoic acid and their tri‐n‐butyltin(IV) complexes were evaluated by using sea urchin early developmental stages as recommended model organisms for toxicity tests. The novel complexes, as the parent tri‐n‐butyltin(IV) chloride (TBTCl), caused mitosis block and induced high embryonic mortality in sea urchin. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
The reaction of dialkyl acetylenedicarboxylates 4 with 1‐aryl‐2‐[(3‐arylquinoxalin‐2(1H)‐ylidene)ethanones 3 in the presence of Ph3P leads to dialkyl (2Z)‐2‐[(E)‐1‐aryl‐2‐(3‐arylquinoxalin‐2‐yl)ethenyl]but‐2‐enedioates 1 in good yields.  相似文献   

8.
In the title compound, C15H13N2+·C24H20B, the pyridyl ring of the cation makes a dihedral angle of 1.6° with the benzene ring. Each is rotated in the same direction with respect to the central –C—CH=CH—C– linkage, by 3.8 and 5.3°, respectively. The anions have a slightly distorted tetra­hedral geometry. Mol­ecular packing analysis was carried out using the packing energy portioning scheme in the program OPEC. Around each anion in the crystal structure there are eight anions, which inter­act with the central anion through C—H⋯π inter­actions. The cations are hydrogen bonded in a head‐to‐tail fashion, forming chains along [10].  相似文献   

9.
The title compounds, C15H16ClN2O+·Br·1.5H2O and C15H16BrN2O+·Br·1.5H2O, are isomorphous. The benzene ring is oriented nearly normal to the pyridine ring in both compounds. The molecular packing is mainly influenced by intermolecular O—H⋯O and O—H⋯Br interactions, as well as weak intramolecular C—H⋯O interactions. The H2OBr units form an extended water–bromide chain, with a bridging water mol­ecule on a twofold axis.  相似文献   

10.
In the title compound, C15H16NO+·C24H20B, the pyridinium ring of the cation makes a dihedral angle of 4.3 (2)° with the benzene ring. Each is rotated in the same direction with respect to the central C—CH=CH—C linkage, by 10.0 (2) and 7.8 (2)°, respectively. The anions have a slightly distorted tetrahedral geometry. The most interesting feature of the structure is that the anions form a honeycomb‐like hexagonal structure down the b axis through C—H...π interactions. The hexagon is constructed from six BPh4 anions. The cations interact in a head‐to‐tail fashion along [010], forming chains, and pack antiparallel inside the above honeycomb‐like structure through C—H...π interactions.  相似文献   

11.
Two new stilbene tetramers, grandiphenols A ( 1 ) and B ( 2 ), along with ten known stilbene oligomers and bergenin were isolated from the stem of Dipterocarpus grandiflorus. The structures of 1 and 2 composed of four resveratrol (=5‐[(1E)‐2‐(4‐hydroxyphenyl)ethenyl]benzene‐1,3‐diol) units had eight asymmetric C‐atoms in the partial structures of a tetrahydrofuran and two dihydrobenzofuran moieties. Detailed spectroscopic analyses, especially HMBC and NOESY experiments, allowed to differentiate the configurations of 1 and 2 .  相似文献   

12.
The solid‐state structures of three push–pull acceptor‐π‐donor (A‐π‐D) systems differing only in the nature of the π‐spacer have been determined. (E)‐1‐Nitro‐4‐[2‐(3,4,5‐trimethoxyphenyl)ethenyl]benzene, C17H17NO5, (I), and its `bridge‐flipped' imine analogues, (E)‐3,4,5‐trimethoxy‐N‐(4‐nitrobenzylidene)aniline, C16H16N2O5, (II), and (E)‐4‐nitro‐N‐(3,4,5‐trimethoxybenzylidene)aniline, C16H16N2O5, (III), display different kinds of supramolecular networks, viz. corrugated planes, a herringbone pattern and a layered structure, respectively, all with zero overall dipole moments. Only (III) crystallizes in a noncentrosymmetric space group (P212121) and is, therefore, a potential material for second‐harmonic generation (SHG).  相似文献   

13.
To enable a comparison between a C—H…X hydrogen bond and a halogen bond, the structures of two fluorous‐substituted pyridinium iodide salts have been determined. 4‐[(2,2‐Difluoroethoxy)methyl]pyridinium iodide, C8H10F2NO+·I, (1), has a –CH2OCH2CF2H substituent at the para position of the pyridinium ring and 4‐[(3‐chloro‐2,2,3,3‐tetrafluoropropoxy)methyl]pyridinium iodide, C9H9ClF4NO+·I, (2), has a –CH2OCH2CF2CF2Cl substituent at the para position of the pyridinium ring. In salt (1), the iodide anion is involved in one N—H…I and three C—H…I hydrogen bonds, which, together with C—H…F hydrogen bonds, link the cations and anions into a three‐dimensional network. For salt (2), the iodide anion is involved in one N—H…I hydrogen bond, two C—H…I hydrogen bonds and one C—Cl…I halogen bond; additional C—H…F and C—F…F interactions link the cations and anions into a three‐dimensional arrangement.  相似文献   

14.
The title compound, C17H10F5N5O2, is described and compared with its 4‐nitrophenyl isomer [Bustos, Sánchez, Schott, Alvarez‐Thon & Fuentealba (2007). Acta Cryst. E 63 , o1138–o1139]. The title molecule presents its nitro group split into two rotationally disordered components, which in conjunction with the rotation of the `unclamped' rings constitute the main molecular differences. Packing is directed by a head‐to‐tail type `I' C—F...F—C interaction, generating double‐chain strips running along [100]. These substructures are interlinked by a variety of weak F...F, O...F, F...π and O...π interactions.  相似文献   

15.
Crystal structures are reported for three isomeric compounds, namely 2‐(2‐hydroxy­phenyl)‐2‐oxazoline, (I), 2‐(3‐hydroxy­phenyl)‐2‐oxazoline, (II), and 2‐(4‐hydroxy­phenyl)‐2‐oxazoline, (III), all C9H9NO2 [systematic names: 2‐(4,5‐dihydro‐1,3‐oxazol‐2‐yl)phenol, (I), 3‐(4,5‐dihydro‐1,3‐oxazol‐2‐yl)phenol, (II), and 4‐(4,5‐dihydro‐1,3‐oxazol‐2‐yl)phenol, (III)]. In these compounds, the deviation from coplanarity of the oxazoline and benzene rings is dependent on the position of the hydroxy group on the benzene ring. The coplanar arrangement in (I) is stabilized by a strong intra­molecular O—H⋯N hydrogen bond. Surprisingly, the 2‐oxazoline ring in mol­ecule B of (II) adopts a 3T4 (C2TC3) conformation, while the 2‐oxazoline ring in mol­ecule A, as well as that in (I) and (III), is nearly planar, as expected. Tetra­mers of mol­ecules of (II) are formed and they are bound together via weak C—H⋯N hydrogen bonds. In (III), strong inter­molecular O—H⋯N hydrogen bonds and weak intra­molecular C—H⋯O hydrogen bonds lead to the formation of an infinite chain of mol­ecules perpendicular to the b direction. This paper also reports a theoretical investigation of hydrogen bonds, based on density functional theory (DFT) employing periodic boundary conditions.  相似文献   

16.
In the cation of the title compound, C15H16NO+·C24H20B?, the pyridyl ring makes a dihedral angle of 14.03° with the phenyl ring. The anion has a slightly distorted tetrahedral geometry and forms honeycomb‐like sheets which extend along the b axis, forming channels containing the cations. A comparison of packing energies reveals a difference between the title compound and a similar material which has non‐linear optical properties.  相似文献   

17.
The title compound, C24H24N2O3S, exhibits antifungal and antibacterial properties. The compound crystallizes with two molecules in the asymmetric unit, with one molecule exhibiting `orientational disorder' in the crystal structure with respect to the cyclohexene ring. The o‐toluidine groups in both molecules are noncoplanar with the respective cyclohexene‐fused thiophene ring. In both molecules, there is an intramolecular N—H...N hydrogen bond forming a pseudo‐six‐membered ring which locks the molecular conformation and eliminates conformational flexibility. The crystal structure is stabilized by O—H...O hydrogen bonds; both molecules in the asymmetric unit form independent chains, each such chain consisting of alternating `ordered' and `disordered' molecules in the crystal lattice.  相似文献   

18.
In the title compound, [CuCl2(C11H15N3O2)], the CuII ion is five‐coordinated in a strongly distorted trigonal–bipyramidal arrangement, with the two methyl­oxime N atoms located in the apical positions, and the pyridine N and the Cl atoms located in the basal plane. The two axial Cu—N distances are almost equal (mean 2.098 Å) and are substantially longer than the equatorial Cu—N bond [1.9757 (15) Å]. It is observed that the N(oxime)—M—N(pyridine) bond angle for five‐membered chelate rings of 2,6‐diacetyl­pyridine dioxime complexes is inversely related to the magnitude of the M—N(pyridine) bond. The structure is stabilized by intra‐ and inter­molecular C—H⋯Cl hydrogen bonds which involve the methyl H atoms, except for one of the two acetyl­methyl groups.  相似文献   

19.
In the title compound, [CoCl2(C11H15N3O2)], the CoII ion is five‐coordinated in a strongly distorted square‐pyramidal arrangement, with one of the two Cl atoms located in the apical position, and the other Cl atom and the three N‐donor atoms of the tridentate methyloxime ligand located in the basal plane. The non‐H atoms, except for the Cl atoms, lie on a mirror plane. The two equatorial Co—Noxime distances are almost equal (mean 2.253 Å) and are substanti­ally longer than the equatorial Co—Npyridine bond [2.0390 (19) Å]. The structure is stabilized by intra‐ and inter­molecular C—H⋯Cl contacts, which involve one of the methyl C atoms belonging to the methyloxime groups.  相似文献   

20.
The title compound, C11H11SN3, crystallizes as twins with a twin volume fraction of 0.4232 (13). An order–disorder (OD) interpretation gives a plausible explanation of the crystallization behaviour. The structure is a polytype with a maximum degree of order (MDO). The contact plane is interpreted as being composed of a fragment of the second MDO polytype. The planes of the triazole and phenyl rings are twisted by 36.88 (6)°. Molecules are connected via C—H...N hydrogen bonds, forming layers parallel to (100). The layers can be arranged in geometrically different but energetically virtually equivalent ways, giving rise to polytypism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号