首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Supramolecular complexes consisting of a single‐stranded oligothymine ( dTn ) as the host template and an array of guest molecules equipped with a complementary diaminotriazine hydrogen‐bonding unit have been studied with electrospray‐ionization mass spectrometry (ESI‐MS). In this hybrid construct, a supramolecular stack of guest molecules is hydrogen bonded to dTn . By changing the hydrogen‐bonding motif of the DNA host template or the guest molecules, selective hydrogen bonding was proven. We were able to detect single‐stranded‐DNA (ssDNA)–guest complexes for strands with lengths of up to 20 bases, in which the highest complex mass detected was 15 kDa; these complexes constitute 20‐component self‐assembled objects. Gas‐phase breakdown experiments on single‐ and multiple‐guest–DNA assemblies gave qualitative information on the fragmentation pathways and the relative complex stabilities. We found that the guest molecules are removed from the template one by one in a highly controlled way. The stabilities of the complexes depend mainly on the molecular weight of the guest molecules, a fact suggesting that the complexes collapse in the gas phase. By mixing two different guests with the ssDNA template, a multicomponent dynamic library can be created. Our results demonstrate that ESI‐MS is a powerful tool to analyze supramolecular ssDNA complexes in great detail.  相似文献   

2.
Aqueous solutions containing simple model aliphatic and alicyclic carboxylic acids (surrogates 1–4) were studied using negative ion electrospray mass spectrometry (ESI‐MS) in the presence and absence of α‐, β‐, and γ‐cyclodextrin. Molecular ions were detected corresponding to the parent carboxylic acids and complexed forms of the carboxylic acids; the latter corresponding to non‐covalent inclusion complexes formed between carboxylic acid and cyclodextrin compounds (e.g., β‐CD, α‐CD, and γ‐CD). The formation of 1:1 non‐covalent inclusion cyclodextrin‐carboxylic complexes and non‐inclusion forms of the cellobiose‐carboxylic acid compounds was also observed. Aqueous solutions of Syncrude‐derived mixtures of aliphatic and alicyclic carboxylic acids (i.e. naphthenic acids; NAs) were similarly studied using ESI‐MS, as outlined above. Molecular ions corresponding to the formation of CD‐NAs inclusion complexes were observed whereas 1:1 non‐inclusion forms of the cellobiose‐NAs complexes were not detected. The ESI‐MS results provide evidence for some measure of inclusion selectivity according to the 'size‐fit' of the host and guest molecules (according to carbon number) and the hydrogen deficiency (z‐series) of the naphthenic acid compounds. The relative abundances of the molecular ions of the CD‐carboxylate anion adducts provide strong support for differing complex stability in aqueous solution. In general, the 1:1 complex stability according to hydrogen deficiency (z‐series) of naphthenic acids may be attributed to the nature of the cavity size of the cyclodextrin host compounds and the relative lipophilicity of the guest. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
通过实验和理论计算方法研究了β-环糊精(CD)与乙二胺1及它的三个类似物: 二乙烯三胺2、三乙胺3和乙二胺四乙酸4之间的包合作用. 利用旋光法确定了β-CD与客体分子形成1:1型主–客体包合物, 在298.2 K下测定了包合物在水中的稳定常数(K). 采用半经验PM3方法考察了β-CD与短链脂肪胺1~7、环状脂肪胺8~11以及芳香胺12~13的分子间结合能力, 报道了β-CD与这些客体分子间的包合络合过程并讨论了这些包合体系之间的包合差异性. 变形能和水合能对包合体系的相互作用能的贡献均相当小. β-CD包合物的稳定性取决于主、客体分子之间的尺寸匹配. 对于β-CD与客体1~4形成的包合物而言, 旋光法测定的包合物的K值的顺序与PM3计算得到的包合物络合能绝对值的排序有很好的一致性.  相似文献   

4.
We have studied the behavior of ferrocene CpFeCp (FcH), ferrocenium triiodide [FcH]+I3, dimethylaminomethylferrocene FcCH2NMe2 and its trimethylammonium salt [FcCH2NMe3]+I under the conventional conditions of electrospray ionization (ESI), when the substance solution is subjected to spraying, and in two versions of desorption electrospray ionization (DESI), when the sprayed solvent bombards the surface of solid or liquid samples. In addition to these techniques, the behavior of neutral compounds under conditions of electrospray ionization of vapors of the studied compounds in a gas phase (ESI_V) has been investigated. It has been shown using the examples of ferrocene and its dimethylaminomethyl derivative that the detection limits for these compounds occurring in a gas phase are comparable within an order of magnitude with their detection limits under the ESI and DESI conditions of solid and liquid samples. The high effectiveness of ionization of analyte vapors makes it possible to use the ESI method not only in combination with liquid (conventional ESI technology) and thin layer chromatography (DESI), but also with gas liquid chromatography (ESI_V). Thus, the electrospray ionization becomes a universal method allowing studies of a compound under the natural conditions in any state of aggregation, that is, solid, liquid, and gas. With the help of statistical methods for designing experiments (complete factorial experiment), quantitative evaluation of the influence of experimental parameters on the ion-formation processes under different ESI conditions has been carried out, which makes it possible to purposefully select the optimal conditions to record the ESI mass spectra with a minimum number of experiments. Moreover, analysis of the dependences of the mass spectra on the experimental parameters can serve as an instrument for studying the details of the ion-formation mechanisms depending upon different ways of ionization.  相似文献   

5.
A polyoxometalate‐based molecular triangle has been synthesized through the metal‐driven self‐assembly of covalent organic/inorganic hybrid oxo‐clusters with remote pyridyl binding sites. The new metallomacrocycle was unambiguously characterized by using a combination of 1H NMR spectroscopy, 2D diffusion NMR spectroscopy (DOSY), electrospray ionization travelling wave ion mobility mass spectrometry (ESI‐TWIM‐MS), small‐angle X‐ray scattering (SAXS) and molecular modelling. The collision cross‐sections obtained from TWIM‐MS and the hydrodynamic radii derived from DOSY are in good agreement with the geometry‐optimized structures obtained by using theoretical calculations. Furthermore, SAXS was successfully employed and proved to be a powerful technique for characterizing such large supramolecular assemblies.  相似文献   

6.
Most pesticides, herbicides and other plant treatment agents are applied to the crop surface. Direct mass spectrometric methods, such as desorption electrospray ionization (DESI), offer new ways to analyze plant samples directly and rapidly. A strategy for the development and optimization of a DESI method for the direct determination of chemicals on complex surfaces is described. Chlorpropham (CP) was applied to potato surfaces as an example for a crop protection agent and analyzed using a self‐made DESI source. Aspects such as instrument selectivity, sensitivity and reproducibility were investigated. The MS4 fragmentation pattern of CP was analyzed to achieve the necessary detection selectivity, and is discussed in detail. Similar fragmentation was found in the ESI and DESI mass spectra, indicating that the mechanisms of ESI and DESI are closely related. A DESI method for semi‐quantification of CP on potatoes was developed. Detection limits of 6.5 µg/kg were found using MS/MS. The reproducibility, in the range of 12% (signal variation), appears to be sufficient for semi‐quantitative measurements. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
The bacteria of the genus Curtobacterium are usually seen as plant pathogen, but some species have been identified as endophytes of different crops and could as such present a potential for disease control and plant growth promotion. We have therefore applied the desorption electrospray ionization mass spectrometry imaging (DESI‐MSI) in the direct analysis of living Curtobacterium sp. strain ER1/6 colonies to map the surface metabolites, and electrospray ionization tandem mass spectrometry (ESI‐MS/MS) for characterization of these compounds. Several colony‐associated metabolites were detected. The ESI‐MS/MS showed characteristic fragmentations for phospholipids including the classes of glycerophosphocholine, glycerophosphoglycerol, and glycerophosphoinositol as well as several fatty acids. Although a secure identification was not obtained, many other metabolites were also detected for this bacteria species. Principal component analysis showed that fatty acids were discriminatory for Curtobacterium sp. ER1/6 during inoculation on periwinkle wilt (PW) medium, whereas phospholipids characterize the bacterium when grown on the tryptic soy agar (TSA) medium.  相似文献   

8.
Electrospray ionization mass spectrometry (MS) has been widely used to detect noncovalent interactions in supramolecular compounds, especially in biological systems. In our work, we present the application of the electrospray ionization MS technique to characterize the metallamacrocycles, known as metallacrowns. This project involves investigations of the aminohydroxamic acids structure and chirality influence on formation of ternary 12‐metallacrown‐4 complexes. For our experiments, we used a series of β‐aminohydroxamic acids and derivatives of histidinehydroxamic acid. A high stability of the studied supramolecular systems in the gas phase was confirmed by MS/MS experiments. We also proposed the fragmentation pathways for the studied compounds. Obtained results reveal that the ternary 12‐metallacrown‐4 formation process is not selective, and ligands of various structures and chiralities can be incorporated into these systems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Increases in the study of protein‐metal complexes, as well as in metal displacement in protein‐metal complexes under native conditions for optimum catalytic properties in drug research and catalyst design, demands a separation/detection technology that can accurately measure metal displacement and stoichiometry in protein‐metal complexes. Both nuclear magnetic resonance (NMR) and X‐ray diffraction techniques have been used for this purpose; however, these techniques lack sensitivity. Electrospray ionization mass spectrometry (ESI‐MS) using direct infusion offers higher sensitivity than the former techniques and provides molecular distribution of various protein‐metal complexes. However, since protein‐metal complexes under native conditions usually are dissolved in salt solutions, their direct ESI‐MS analysis requires off‐line sample clean‐up prior to MS analysis to avoid sample suppression during ESI. Moreover, direct infusion of the salty solution promotes non‐specific salt adduct formation by the protein‐metal complexes under ESI‐MS, which complicates the identification and stoichiometry measurements of the protein‐metal complexes. Because of the high mass of protein‐metal complexes and lack of sufficient resolution by most mass spectrometers to separate non‐specific from specific metal‐protein complexes, accurate protein‐metal stoichiometry measurements require some form of sample clean up prior to ESI‐MS analysis. In this study, we demonstrate that capillary electrophoresis/electrospray ionization in conjunction with a medium‐resolution (~10 000) mass spectrometer is an efficient and fast method for the measurement of the stoichiometry of the protein‐metal complexes under physiological conditions (pH ~7). The metal displacement of Co2+ to Cd2+, two metal ions necessary for activation in the monomeric AHL lactonase produced by B. thuringiensis, has been used as a proof of concept. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
N-(1,3,2-Dioxaphosphorinan-2-ylmethyl)thiophosphoramidates were synthesized and determined by NMR spectra and positive ion electrospray ionization mass spectrometry (ESI-MS) in conjunction with tandem mass spectrometry (MS/MS). The fragmentation pathways were investigated. The results show that these characteristic ions in ESI mass spectra are useful in the structural determination of N-(1,3,2-dioxaphosphorinan-2-ylmethyl)- thiophosphoramidates.  相似文献   

11.
A desorption electrospray ionization (DESI) source has been coupled to an ion mobility time-of-flight mass spectrometer for the analysis of proteins. Analysis of solid-phase horse heart cytochrome c and chicken egg white lysozyme proteins with different DESI solvents and conditions shows similar mass spectra and charge state distributions to those formed when using electrospray to analyze these proteins in solution. The ion mobility data show evidence for compact ion structures [when the surface is exposed to a spray that favors retention of "nativelike" structures (50:50 water:methanol)] or elongated structures [when the surface is exposed to a spray that favors "denatured" structures (49:49:2 water:methanol:acetic acid)]. The results suggest that the DESI experiment is somewhat gentler than ESI and under appropriate conditions, it is possible to preserve structural information throughout the DESI process. Mechanisms that are consistent with these results are discussed.  相似文献   

12.
Desorption electrospray ionization mass spectrometry (DESI‐MS) requires little to no sample preparation and has been successfully applied to the study of biologically significant macromolecules such as proteins. However, DESI‐MS and other ambient methods that use spray desorption to process samples during ionization appear limited to smaller proteins with molecular masses of 25 kDa or less, and a decreasing instrumental response with increasing protein size has often been reported. It has been proposed that this limit results from the inability of some proteins to easily desorb from the surface during DESI sampling. The present study investigates the apparent mass dependence of the instrumental response observed during the DESI‐MS analysis of proteins using spray desorption collection and reflective electrospray ionization. Proteins, as large as 66 kDa, are shown to be quantitatively removed from surfaces by using spray desorption collection. However, incomplete dissolution and the formation of protein–protein and protein–contaminant clusters appear to be responsible for the mass‐dependent loss in sensitivity for protein analysis. Alternative ambient mass spectrometry approaches that address some of the problems encountered by spray desorption techniques for protein analysis are also discussed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
A group of rhenium (I) complexes including in their structure ligands such as CF3SO3‐, CH3CO2‐, CO, 2,2′‐bipyridine, dipyridil[3,2‐a:2′3′‐c]phenazine, naphthalene‐2‐carboxylate, anthracene‐9‐carboxylate, pyrene‐1‐carboxylate and 1,10‐phenanthroline have been studied for the first time by mass spectrometry. The probe electrospray ionization (PESI) is a technique based on electrospray ionization (ESI) that generates electrospray from the tip of a solid metal needle. In this work, mass spectra for organometallic complexes obtained by PESI were compared with those obtained by classical ESI and high flow rate electrospray ionization assisted by corona discharge (HF‐ESI‐CD), an ideal method to avoid decomposition of the complexes and to induce their oxidation to yield intact molecular cation radicals in gas state [M]+. and to produce their reduction yielding the gas species [M]–.. It was found that both techniques showed in general the intact molecular ions of the organometallics studied and provided additional structure characteristic diagnostic fragments. As the rhenium complexes studied in the present work showed strong absorption in the UV–visible region, particularly at 355 nm, laser desorption ionization (LDI) mass spectrometry experiments could be conducted. Although intact molecular ions could be detected in a few cases, LDI mass spectra showed diagnostic fragments for characterization of the complexes structure. Furthermore, matrix‐assisted laser desorption ionization (MALDI) mass spectra were obtained. Nor‐harmane, a compound with basic character, was used as matrix, and the intact molecular ions were detected in two examples, in negative ion mode as the [M]–. species. Results obtained with 2‐[(2E)‐3‐(4‐tert‐buthylphenyl)‐2‐methylprop‐2‐enylidene] malononitrile (DCTB) as matrix are also described. LDI experiments provided more information about the rhenium complex structures than did the MALDI ones. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Native non‐covalently bonded protein‐protein and protein‐substrate complexes are of great interest and have been extensively studied by electrospray ionization mass spectrometry (ESI‐MS). Multiply charged protein homomultimeric complexes are shown to form by ESI‐MS. This study addresses factors that can artificially induce the formation of multiply charged protein homomultimeric complexes. Cytochrome c (Cyt c) and ubiquitin, which are monomers in solution, were found to generate (Cyt c)mn+ by electrospray ionization (ESI). The homomultimeric complexes were not limited to dimeric complexes but include also multiply charged trimers, tetramers, and pentamers. The observation of these homomultimeric complexes has never been revealed from a Cyt c solution at the concentration as low as 10 μM. Increasing the concentration of Cyt c enhanced the formation of (Cyt c)mn+ as expected; however, the protein concentration does not affect the relative intensities of monomeric and dimeric complexes. Additionally the enrichment of NH4OH also promotes the formation of (Cyt c)mn+. Notably, source collision‐induced dissociations (source‐CID) of (Cyt c)mn+ alter the charge state distribution (CSD) and may lead to an incorrect interpretation of Cyt c conformations. Hence, extra care should be taken when using CSD to interpret the conformation of a protein derived from ESI‐MS.  相似文献   

15.
Ambient mass spectrometry is useful for analyzing compounds that would be affected by other chemical procedures. Poison frogs are known to sequester alkaloids from their diet, but the sequestration pathway is unknown. Here, we describe methods for whole‐body cryosectioning of frogs and use desorption electrospray ionization mass spectrometry imaging (DESI‐MSI) to map the orally administered alkaloid histrionicotoxin 235A in a whole‐body section of the poison frog Dendrobates tinctorius. Our results show that whole‐body cryosectioning coupled with histochemical staining and DESI‐MSI is an effective technique to visualize alkaloid distribution and help elucidate the mechanisms involved in alkaloid sequestration in poison frogs.  相似文献   

16.
Two novel [2+2] metallo‐assemblies based on a guanosine‐substituted terpyridine ligand ( 1 ) coordinated to palladium(II) ( 2 a ) and platinum(II) ( 2 b ) are reported. These supramolecular assemblies have been fully characterized by NMR spectroscopy, ESI mass spectrometry and elemental analyses. The palladium(II) complex ( 2 a ) has also been characterized by single crystal X‐ray diffraction studies confirming that the system is a [2+2] metallo‐rectangle in the solid state. The stabilities of these [2+2] assemblies in solution have been confirmed by DOSY studies as well as by variable temperature 1H NMR spectroscopy. The ability of these dinuclear complexes to interact with quadruplex and duplex DNA was investigated by fluorescent intercalator displacement (FID) assays, fluorescence resonance energy transfer (FRET) melting studies, and electrospray mass spectrometry (ESI‐MS). These studies have shown that both these assemblies interact selectively with quadruplex DNA (human telomeric DNA and the G‐rich promoter region of c‐myc oncogene) over duplex DNA, and are able to induce dimerization of parallel G‐quadruplex structures.  相似文献   

17.
A new method for tissue imaging using desorption electrospray ionization (DESI) mass spectrometry is described. The technique utilizes a DESI source with a heated nebulizing gas and high‐resolution accurate mass data acquired with an LTQ‐Orbitrap mass spectrometer. The two‐dimensional (2D) automated DESI ion source creates images using the ions that are collected under high‐resolution conditions. The use of high‐resolution mass detection significantly improves the image quality due to exclusion of interfering ions. The use of a heated nebulizing gas increases the signal intensity observed at lower gas pressure. The technique developed is highly compatible with soft tissue imaging due to the minimal surface destruction. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Salsolinol, 1‐methyl‐6,7‐dihydroxy‐2,3,4,5‐tetrahydroisoquinoline (SAL), is a precursor of a Parkinsonian neurotoxin, N‐methysalsolinol (N‐methyl‐SAL). Previous studies have shown that individual enantiomers of N‐methyl‐SAL possess distinct neurotoxicological properties. In this work, a chiral high‐performance liquid chromatography (HPLC) method with electrospray ionization tandem mass spectrometric (ESI‐MS/MS) detection was developed for the quantification of (R/S)‐SAL enantiomers. Enantioseparation was achieved on a β‐cyclodextrin‐bonded silica gel column, and the resolved enantiomers were detected by ESI‐MS/MS operated in positive ion mode. The ESI collision‐induced dissociation (CID) mass spectrum of SAL was studied together with that of its deuterium‐labeled analog (i.e. salsolinol‐α,α,α,1‐d4, SAL‐d4) so that the fragmentation pathways could be elucidated. Further, using SAL‐d4 as internal standard in HPLC/MS/MS analysis of SAL improved significantly assay accuracy and reliability. Determination of (R/S)‐SAL enantiomers present in food samples such as dried banana chips was demonstrated. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
Combining the concepts of supramolecular polymers and dendronized polymers provides the opportunity to create bulky polymers with easy structural modification and tunable properties. In the present work, a novel class of side‐chain supramolecular dendronized polymethacrylates is prepared through the host–guest interaction. The host is a linear polymethacrylate (as the backbone) attached in each repeat unit with a β‐cyclodextrin (β‐CD) moiety, and the guest is constituted with three‐fold branched oligoethylene glycol (OEG)‐based first‐ (G1) and second‐generation (G2) dendrons with an adamantyl group core. The host and guest interaction in aqueous solution leads to the formation of the supramolecular polymers, which is supported with 1H NMR spectroscopy and dynamic light scattering measurements. The supramolecular formation was also examined at different host/guest ratios. The water solubility of hosts and guests increases upon supramolecular formation. The supramolecular polymers show good solubility in water at room temperature, but exhibit thermoresponsive behavior at elevated temperatures. Their thermoresponsiveness is thus investigated with UV/Vis and 1H NMR spectroscopy, and compared with their counterparts formed from individual β‐CD and the OEG dendritic guest. The effect of polymer concentration and molar ratio of host/guest was examined. It is found that the polar interior of the supramolecules contribute significantly to the thermally‐induced phase transitions for the G1 polymer, but this effect is negligible for the G2 polymer. Based on the temperature‐varied proton NMR spectra, it is found that the host–guest complex starts to decompose during the aggregation process upon heating to its dehydration temperature, and this decomposition is enhanced with an increase of solution temperature.  相似文献   

20.
Synthesis of substituted pyrroles in H2O by using β‐cyclodextrin as a supramolecular catalyst is described. This reaction has several advantages over existing methods and provides substituted pyrroles in good‐to‐excellent yields (79–89%). The supramolecular catalysis of the reaction was studied using 1H‐NMR spectroscopy. β‐Cyclodextrin can be recovered and reused several times without loss of activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号