首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A new polymorph (denoted polymorph II) of 3‐acetyl‐4‐hydroxy‐2H‐chromen‐2‐one, C11H8O4, was obtained unexpectedly during an attempt to recrystallize the compound from salt–melted ice, and the structure is compared with that of the original polymorph (denoted polymorph I) [Lyssenko & Antipin (2001). Russ. Chem. Bull. 50 , 418–431]. Strong intramolecular O—H...O hydrogen bonds are observed equally in the two polymorphs [O...O = 2.4263 (13) Å in polymorph II and 2.442 (1) Å in polymorph I], with a slight delocalization of the hydroxy H atom towards the ketonic O atom in polymorph II [H...O = 1.32 (2) Å in polymorph II and 1.45 (3) Å in polymorph I]. In both crystal structures, the packing of the molecules is dominated and stabilized by weak intermolecular C—H...O hydrogen bonds. Additional π–π stacking interactions between the keto–enol hydrogen‐bonded rings stabilize polymorph I [the centres are separated by 3.28 (1) Å], while polymorph II is stabilized by interactions between α‐pyrone rings, which are parallel to one another and separated by 3.670 (5) Å.  相似文献   

2.
Recrystallization of the title compound, [Fe(C5H5)(C14H13N2O3)], from a mixture of n‐hexane and dichloromethane gave the new polymorph, denoted (I), which crystallizes in the same space group (P) as the previously reported structure, denoted (II). The Fe—C distances in (I) range from 2.015 (3) to 2.048 (2) Å and the average value of the C—C bond lengths in the two cyclopentadienyl (Cp) rings is 1.403 (13) Å. As indicated by the smallest C—Cg1—Cg2—C torsion angle of 1.4° (Cg1 and Cg2 are the centroids of the two Cp rings), the orientation of the Cp rings in (I) is more eclipsed than in the case of (II), for which the value was 15.3°. Despite the pronounced conformational similarity between (I) and (II), the formation of self‐complementary N—H...O hydrogen‐bonded dimers represents the only structural motif common to the two polymorphs. In the extended structure, molecules of (I) utilize C—H...O hydrogen bonds and, unlike (II), an extensive set of intermolecular C—H...π interactions. Fingerprint plots based on Hirshfeld surfaces are used to compare the packing of the two polymorphs.  相似文献   

3.
The title compound, C19H14N2O4, was found to have two crystal polymorphs, in which the molecular structures of the diacetylenic compound are broadly similar. The main structural difference between the polymorphs concerns the intermolecular hydrogen‐bonding motifs adopted, namely a one‐dimensional zigzag polymer linked by N—H…N(py) (py is pyridine) interactions in polymorph I and a centrosymmetric dimeric motif formed by N—H…O=C interactions in polymorph II. The diacetylene cores of the molecules stack along the a and b axes in polymorphs I and II, respectively. It was found that only the molecular arrangement in polymorph II satisfies Baughman's criterion to afford polydiacetylenes (PDAs) by thermal annealing or irradiation with light. This predicted polymerization activity was confirmed by experiment.  相似文献   

4.
In the title compound, C5H8N6OS2, the supramol­ecular architecture is sustained by two N—H...O and three N—H...S hydrogen bonds, and by N...S electrostatic interactions. The hydrogen‐bond network generates a sheet structure, which extends in the a and b directions and is one c‐cell dimension thick. These extended sheets are then linked across inversion centres in the c direction by N...S electrostatic interactions, thus forming a three‐dimensional network. The principal intermolecular dimensions include N(H)...O distances of 2.8393 (17) and 3.0268 (16) Å, N(H)...S distances in the range 3.2896 (14)–3.5924 (16) Å and N...S distances of 3.0822 (16) Å.  相似文献   

5.
The molecular structures of 4,7‐di­chloro­benzo­[c]­fur­azan 1‐­oxide, C6H2Cl2N2O2, (I), and 4,7‐di­bromo­benzo­[c]­fur­azan 1‐oxide, C6H2Br2N2O2, (II), are normal. Compound (I) occurs in two polymorphic forms. One polymorph contains one mol­ecule in the asymmetric unit, organized into two‐dimensional sheets involving intermolecular N?Cl and O?Cl inter­actions. The second polymorph has three mol­ecules in the asymmetric unit, organized into two crystallographically different two‐dimensional sheets with similar interactions. Compound (II) is isomorphous with the second polymorph of (I). The three two‐dimensional sheets in the two polymorphs comprise a set of three two‐dimensional polymorphic arrangements.  相似文献   

6.
The crystal structures of the monoclinic and triclinic polymorphs of zoledronic acid, C5H10N2O7P2, have been established from laboratory powder X‐ray diffraction data. The molecules in both polymorphs are described as zwitterions, namely 1‐(2‐hydroxy‐2‐phosphonato‐2‐phosphonoethyl)‐1H‐imidazol‐3‐ium. Strong intermolecular hydrogen bonds (with donor–acceptor distances of 2.60 Å or less) link the molecules into layers, parallel to the (100) plane in the monoclinic polymorph and to the (10) plane in the triclinic polymorph. The phosphonic acid groups form the inner side of each layer, while the imidazolium groups lie to the outside of the layer, protruding in opposite directions. In both polymorphs, layers related by translation along [100] interact through weak hydrogen bonds (with donor–acceptor distances greater than 2.70 Å), forming three‐dimensional layered structures. In the monoclinic polymorph, there are hydrogen‐bonded centrosymmetric dimers linked by four strong O—H...O hydrogen bonds, which are not present in the triclinic polymorph.  相似文献   

7.
Crystallization (from ethyl acetate solution) of 2‐(4‐chlorophenyl)‐4‐methylchromenium perchlorate, C16H12ClO+·;ClO4, (I), yields two monoclinic polymorphs with the space groups P21/n [polymorph (Ia)] and P21/c [polymorph (Ib)]; in both cases, Z = 4. Cations and anions, disordered in polymorph (Ib), form ion pairs in both polymorphs as a result of Cl—O...π interactions. Related by a centre of symmetry, neighbouring ion pairs in polymorph (Ia) are linked viaπ–π interactions between cationic fragments, and the resulting dimers are linked through a network of C—H...O(perchlorate) interactions between adjacent cations and anions. The ion pairs in polymorph (Ib), arranged in pairs of columns along the a axis, are linked through a network of C—H...O(perchlorate), C—Cl...π, π–π and C—Cl...O(perchlorate) interactions. The aromatic skeletons in polymorph (Ia) are parallel in the cationic fragments involved in dimers, but nonparallel in adjacent ion pairs not constituting dimers. In polymorph (Ib), these skeletons are parallel in pairs of columns, but nonparallel in adjacent pairs of columns; this is visible as a herring‐bone pattern. Differences in the crystal structures of the polymorphs are most probably the cause of their different colours.  相似文献   

8.
Two polymorphs of the title compound, C5H5NO, (I), have been obtained from ethanol. One polymorph crystallizes in the monoclinic space group C2/c [henceforth (I)‐M], while the other crystallizes in the orthorhombic space group Pbca [henceforth (I)‐O]. In the two forms, the lattice parameters, cell volume and packing motifs are very similar. There are also two independent molecules of 4‐pyridone in each asymmetric unit. The molecules are linked by N—H...O hydrogen bonds into one‐dimensional zigzag chains extending along the b axis in the (I)‐M polymorph and along the a axis in the (I)‐O polymorph, with the graph set C22(12). The structures are stabilized by weak C—H...O hydrogen bonds linking adjacent chains, thus forming a ring with the graph set R65(28). The significance of this study lies in the analysis of the hydrogen‐bond interactions occurring in these structures. Analyses of the crystal structures of the two polymorphs of 4‐pyridone are helpful in elucidating the mechanism of the generation of spectroscopic effects observed in the IR spectra of these polymorphs in the frequency range of the N—H stretching vibration band.  相似文献   

9.
The four isomers 2,4‐, (I), 2,5‐, (II), 3,4‐, (III), and 3,5‐difluoro‐N‐(3‐pyridyl)benzamide, (IV), all with formula C12H8F2N2O, display molecular similarity, with interplanar angles between the C6/C5N rings ranging from 2.94 (11)° in (IV) to 4.48 (18)° in (I), although the amide group is twisted from either plane by 18.0 (2)–27.3 (3)°. Compounds (I) and (II) are isostructural but are not isomorphous. Intermolecular N—H...O=C interactions form one‐dimensional C(4) chains along [010]. The only other significant interaction is C—H...F. The pyridyl (py) N atom does not participate in hydrogen bonding; the closest H...Npy contact is 2.71 Å in (I) and 2.69 Å in (II). Packing of pairs of one‐dimensional chains in a herring‐bone fashion occurs viaπ‐stacking interactions. Compounds (III) and (IV) are essentially isomorphous (their a and b unit‐cell lengths differ by 9%, due mainly to 3,4‐F2 and 3,5‐F2 substitution patterns in the arene ring) and are quasi‐isostructural. In (III), benzene rotational disorder is present, with the meta F atom occupying both 3‐ and 5‐F positions with site occupancies of 0.809 (4) and 0.191 (4), respectively. The N—H...Npy intermolecular interactions dominate as C(5) chains in tandem with C—H...Npy interactions. C—H...O=C interactions form R22(8) rings about inversion centres, and there are π–π stacks about inversion centres, all combining to form a three‐dimensional network. By contrast, (IV) has no strong hydrogen bonds; the N—H...Npy interaction is 0.3 Å longer than in (III). The carbonyl O atom participates only in weak interactions and is surrounded in a square‐pyramidal contact geometry with two intramolecular and three intermolecular C—H...O=C interactions. Compounds (III) and (IV) are interesting examples of two isomers with similar unit‐cell parameters and gross packing but which display quite different intermolecular interactions at the primary level due to subtle packing differences at the atom/group/ring level arising from differences in the peripheral ring‐substitution patterns.  相似文献   

10.
Two polymorphs of biphenyl‐4,4′‐diaminium bis(3‐carboxy‐4‐hydroxybenzenesulfonate) dihydrate, C12H14N22+·2C7H5O6S·2H2O, have been obtained and crystallographically characterized. Polymorph (I) crystallizes in the space group P21/c with Z′ = 2 and polymorph (II) in the space group P with Z′ = 0.5. The benzidinium cation in (II) is located on a crystallographic inversion centre. In both (I) and (II), the sulfonic acid H atoms are transferred to the benzidine N atoms, forming dihydrated 1:2 molecular adducts (base–acid). In the crystal packings of (I) and (II), the component ions are linked into three‐dimensional networks by combinations of X—H...O (X = O, N and C) hydrogen bonds. In addition, π–π interactions are observed in (I) between inversion‐related benzene rings [centroid–centroid distances = 3.632 (2) and 3.627 (2) Å]. In order to simplify the complex three‐dimensional networks in (I) and (II), we also give their rationalized topological analyses.  相似文献   

11.
The title compound, C18H18Cl4N2O2, crystallizes as monoclinic and orthorhombic polymorphs from CHCl3–CH3OH solution. In both polymorphic forms, the molecule lies on a crystallographic centre of inversion (at the piperazine ring centroid) and exhibits an intramolecular O—H...N hydrogen bond. In the monoclinic polymorph (space group P21/c), the molecules are linked by intermolecular C—H...Cl hydrogen bonds into a ribbon sheet built from R88(34) rings. In the orthorhombic polymorph (space group Pbcn), the molecules are linked by intermolecular C—H...O hydrogen bonds into a ribbon sheet of R66(34) rings. The sheets in the orthorhombic polymorph are crosslinked into a three‐dimensional framework by π–π stacking interactions.  相似文献   

12.
Molecules of (E)‐3‐(2‐chloro‐6‐methylquinolin‐3‐yl)‐1‐(5‐iodo‐2‐thienyl)prop‐2‐en‐1‐one, C17H11ClINOS, (I), and (E)‐3‐(2‐chloro‐6‐methylquinolin‐3‐yl)‐1‐(5‐methyl‐2‐furyl)prop‐2‐en‐1‐one, C18H14ClNO2, (II), adopt conformations slightly twisted from coplanarity. Both structures are devoid of classical hydrogen bonds. However, nonclassical C—H...O/N interactions [with C...O = 3.146 (5) Å and C...N = 3.487 (3) Å] link the molecules into chains extended along the b axis in (I) and form dimers with an R22(8) motif in (II). The structural analysis of these compounds provides an insight into the correlation between molecular structures and intermolecular interactions in compounds for drug development.  相似文献   

13.
Single crystals of a triclinic polymorphic form of mer‐μ‐oxalato‐bis[chloridotripyridinecobalt(II)] pyridine disolvate, [Co2(C2O4)Cl2(C5H5N)6]·2C5H5N, have been prepared by solvothermal methods. The structure and geometric parameters strongly resemble those of the previously reported monoclinic polymorph [Bolte (2006). Acta Cryst. E 62 , m597–m598]. In both polymorphic forms, the dinuclear complex molecules are located on a crystallographic centre of inversion, with the CoII cations in a distorted octahedral environment consisting of a chloride ligand, three pyridine ligands and a chelating bis‐bidentate oxalate ligand. This last serves as a bridging ligand between two CoII cations. The polymorphs differ in the mutual orientation of their pyridine ligands in the dinuclear molecules and in their intermolecular connectivity. In the triclinic polymorph, C—H...O, C—H...Cl, C—H...π and π–π interactions link the dinuclear molecules into a three‐dimensional structure. Pyridine solvent molecules are attached to this structure via weak interactions.  相似文献   

14.
The title compounds, C10H9N5O·H2O (L1·H2O) and C16H12N6O (L2), were synthesized by solvent‐free aldol condensation at room temperature. L1, prepared by grinding picolinaldehyde with 2,3‐diamino‐3‐isocyanoacrylonitrile in a 1:1 molar ratio, crystallized as a monohydrate. L2 was prepared by grinding picolinaldehyde with 2,3‐diamino‐3‐isocyanoacrylonitrile in a 2:1 molar ratio. By varying the conditions of crystallization it was possible to obtain two polymorphs, viz. L2‐I and L2‐II; both crystallized in the monoclinic space group P21/c. They differ in the orientation of one pyridine ring with respect to the plane of the imidazole ring. In L2‐I, this ring is oriented towards and above the imidazole ring, while in L2‐II it is rotated away from and below the imidazole ring. In all three molecules, there is a short intramolecular N—H...N contact inherent to the planarity of the systems. In L1·H2O, this involves an amino H atom and the C=N N atom, while in L2 it involves an amino H atom and an imidazole N atom. In the crystal structure of L1·H2O, there are N—H...O and O—H...O intermolecular hydrogen bonds which link the molecules to form two‐dimensional networks which stack along [001]. These networks are further linked via intermolecular N—H...N(cyano) hydrogen bonds to form an extended three‐dimensional network. In the crystal structure of L2‐I, symmetry‐related molecules are linked via N—H...N hydrogen bonds, leading to the formation of dimers centred about inversion centres. These dimers are further linked via N—H...O hydrogen bonds involving the amide group, also centred about inversion centres, to form a one‐dimensional arrangement propagating in [100]. In the crystal structure of L2‐II, the presence of intermolecular N—H...O hydrogen bonds involving the amide group results in the formation of dimers centred about inversion centres. These are linked via N—H...N hydrogen bonds involving the second amide H atom and the cyano N atom, to form two‐dimensional networks in the bc plane. In L2‐I and L2‐II, C—H...π and π–π interactions are also present.  相似文献   

15.
Alkanolamines have been known for their high CO2 absorption for over 60 years and are used widely in the natural gas industry for reversible CO2 capture. In an attempt to crystallize a salt of (RS)‐2‐(3‐benzoylphenyl)propionic acid with 2‐amino‐2‐methylpropan‐1‐ol, we obtained instead a polymorph (denoted polymorph II) of bis(1‐hydroxy‐2‐methylpropan‐2‐aminium) carbonate, 2C4H12NO+·CO32−, (I), suggesting that the amine group of the former compound captured CO2 from the atmosphere forming the aminium carbonate salt. This new polymorph was characterized by single‐crystal X‐ray diffraction analysis at low temperature (100 K). The salt crystallizes in the monoclinic system (space group C2/c, Z = 4), while a previously reported form of the same salt (denoted polymorph I) crystallizes in the triclinic system (space group P, Z = 2) [Barzagli et al. (2012). ChemSusChem, 5 , 1724–1731]. The asymmetric unit of polymorph II contains one 1‐hydroxy‐2‐methylpropan‐2‐aminium cation and half a carbonate anion, located on a twofold axis, while the asymmetric unit of polymorph I contains two cations and one anion. These polymorphs exhibit similar structural features in their three‐dimensional packing. Indeed, similar layers of an alternating cation–anion–cation neutral structure are observed in their molecular arrangements. Within each layer, carbonate anions and 1‐hydroxy‐2‐methylpropan‐2‐aminium cations form planes bound to each other through N—H…O and O—H…O hydrogen bonds. In both polymorphs, the layers are linked to each other via van der Waals interactions and C—H…O contacts. In polymorph II, a highly directional C—H…O contact (C—H…O = 156°) shows as a hydrogen‐bonding interaction. Periodic theoretical density functional theory (DFT) calculations indicate that both polymorphs present very similar stabilities.  相似文献   

16.
Two polymorphs of the title compound [systematic name: 1‐(2,4‐dihydroxyphenyl)ethanone], C8H8O3, were investigated. The known structure [designated (I‐M); P21/c, Z = 4; previously investigated at room temperature by Robert, Moore, Eichhorn & Rillema (2007). Acta Cryst. E 63 , o4252] was redetermined at low temperature, and a new form [(I‐O); P212121, Z = 12] was discovered in the same sample. In both forms, the molecules are planar (apart from the methyl H atoms) and they contain intramolecular O—H...O=C hydrogen bonds. In polymorph (I‐M), molecules are linked into chains by a single intermolecular O—H...O hydrogen bond, and the chains are linked into sheets by two C—H...O hydrogen bonds. Three O—H...O hydrogen bonds link the molecules of polymorph (I‐O) into chains and neighbouring chains are connected by one C—H...O interaction to form an offset layer structure. Two weak methyl C—H...O interactions link the layers.  相似文献   

17.
Two polymorphs, α and γ, of the title compound, C22H20N2O2, have been characterized by means of single‐crystal synchrotron X‐ray diffraction. In the α form, the mol­ecules pack in a herring‐bone fashion, linked via weak C—H?N intermolecular interactions (H?N 2.58 Å). In the γ form, the mol­ecules are arranged in nearly planar sheets, which form a network held together by intermolecular hydrogen bonds of the type C—H?O (H?O 2.49 Å) and C—H?N (H?N 2.50 Å). The stacking distance between the sheets is 3.40 Å.  相似文献   

18.
N,N′‐Diethyl‐4‐nitrobenzene‐1,3‐diamine, C10H15N3O2, (I), crystallizes with two independent molecules in the asymmetric unit, both of which are nearly planar. The molecules differ in the conformation of the ethylamine group trans to the nitro group. Both molecules contain intramolecular N—H...O hydrogen bonds between the adjacent amine and nitro groups and are linked into one‐dimensional chains by intermolecular N—H...O hydrogen bonds. The chains are organized in layers parallel to (101) with separations of ca 3.4 Å between adjacent sheets. The packing is quite different from what was observed in isomeric 1,3‐bis(ethylamino)‐2‐nitrobenzene. 2,6‐Bis(ethylamino)‐3‐nitrobenzonitrile, C11H14N4O2, (II), differs from (I) only in the presence of the nitrile functionality between the two ethylamine groups. Compound (II) crystallizes with one unique molecule in the asymmetric unit. In contrast with (I), one of the ethylamine groups, which is disordered over two sites with occupancies of 0.75 and 0.25, is positioned so that the methyl group is directed out of the plane of the ring by approximately 85°. This ethylamine group forms an intramolecular N—H...O hydrogen bond with the adjacent nitro group. The packing in (II) is very different from that in (I). Molecules of (II) are linked by both intermolecular amine–nitro N—H...O and amine–nitrile N—H...N hydrogen bonds into a two‐dimensional network in the (10) plane. Alternating molecules are approximately orthogonal to one another, indicating that π–π interactions are not a significant factor in the packing. Bis(4‐ethylamino‐3‐nitrophenyl) sulfone, C16H18N4O6S, (III), contains the same ortho nitro/ethylamine pairing as in (I), with the position para to the nitro group occupied by the sulfone instead of a second ethylamine group. Each 4‐ethylamino‐3‐nitrobenzene moiety is nearly planar and contains the typical intramolecular N—H...O hydrogen bond. Due to the tetrahedral geometry about the S atom, the molecules of (III) adopt an overall V shape. There are no intermolecular amine–nitro hydrogen bonds. Rather, each amine H atom has a long (H...O ca 2.8 Å) interaction with one of the sulfone O atoms. Molecules of (III) are thus linked by amine–sulfone N—H...O hydrogen bonds into zigzag double chains running along [001]. Taken together, these structures demonstrate that small changes in the functionalization of ethylamine–nitroarenes cause significant differences in the intermolecular interactions and packing.  相似文献   

19.
The 4‐chloro‐ [C14H11ClN2O2, (I)], 4‐bromo‐ [C14H10BrN2O2, (II)] and 4‐diethylamino‐ [C18H21N3O2, (III)] derivatives of benzylidene‐4‐hydroxybenzohydrazide, all crystallize in the same space group (P21/c), (I) and (II) also being isomorphous. In all three compounds, the conformation about the C=N bond is E. The molecules of (I) and (II) are relatively planar, with dihedral angles between the two benzene rings of 5.75 (12) and 9.81 (17)°, respectively. In (III), however, the same angle is 77.27 (9)°. In the crystal structures of (I) and (II), two‐dimensional slab‐like networks extending in the a and c directions are formed via N—H...O and O—H...O hydrogen bonds. The molecules stack head‐to‐tail viaπ–π interactions involving the aromatic rings [centroid–centroid distance = 3.7622 (14) Å in (I) and 3.8021 (19) Å in (II)]. In (III), undulating two‐dimensional networks extending in the b and c directions are formed via N—H...O and O—H...O hydrogen bonds. The molecules stack head‐to‐head viaπ–π interactions involving inversion‐related benzene rings [centroid–centroid distances = 3.6977 (12) and 3.8368 (11) Å].  相似文献   

20.
The title compounds, C11H11BrO3, (I), and C11H11NO5, (II), respectively, are derivatives of 6‐hydroxy‐5,7,8‐trimethylchroman‐2‐one substituted at the 5‐position by a Br atom in (I) and by a nitro group in (II). The pyranone rings in both molecules adopt half‐chair conformations, and intramolecular O—H...Br [in (I)] and O—H...Onitro [in (II)] hydrogen bonds affect the dispositions of the hydroxy groups. Classical intermolecular O—H...O hydrogen bonds are found in both molecules but play quite dissimilar roles in the crystal structures. In (I), O—H...O hydrogen bonds form zigzag C(9) chains of molecules along the a axis. Because of the tetragonal symmetry, similar chains also form along b. In (II), however, similar contacts involving an O atom of the nitro group form inversion dimers and generate R22(12) rings. These also result in a close intermolecular O...O contact of 2.686 (4) Å. For (I), four additional C—H...O hydrogen bonds combine with π–π stacking interactions between the benzene rings to build an extensive three‐dimensional network with molecules stacked along the c axis. The packing in (II) is much simpler and centres on the inversion dimers formed through O—H...O contacts. These dimers are stacked through additional C—H...O hydrogen bonds, and further weak C—H...O interactions generate a three‐dimensional network of dimer stacks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号