首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The aim of the present study was to identify the structure of active compounds in Cyathus stratus that previously demonstrated anti-pancreatic cancer activity. The active compounds were purified from a crude extract by a series of RP-18 preparative chromatography using homemade octadecyl silica gel column. HPLC injection of the crude extract revealed a chromatogram with three main peaks with retention times (RT) 15.6, 18.2, and 22.5 min. Each fraction that exhibited promising activity in vitro was further separated using various available chromatographic techniques. The purified compound with the ultimate anti-cancer activity appeared at RT of 15.8 in the HPLC chromatogram with more than 90% purity. The main peak at the mass spectra appeared at m/z = 446.2304 with the calculated molecular formula of C25H34O7. One- and two-dimensional NMR analyses indicated that the structure of the active molecule (peak 15.8 min in HPLC) was identified as striatal C. Exposure of human pancreatic cancer cells to purified striatal C resulted in induction of apoptosis. Further studies are needed in order to develop a method for the synthesis of striatal in order to use it in clinical studies for treatment of cancer.  相似文献   

4.
Shikonin is the main component of root extracts from the Chinese herbal medicine Lithospermum erythrorhizon, which is commonly used for the treatment of various diseases including cancer. Previous research showed that shikonin suppressed pancreatic cancer growth; nevertheless, its molecular targets and mechanisms have not been elucidated. This study aimed to investigate the interaction and regulatory mechanisms of shikonin on its potential target p21-activated kinase 1 (PAK1). Through a labchip-based screening method, shikonin was identified as a potential bioactive PAK1 inhibitor. Molecular docking technology was used to detect the interaction sites of shikonin and PAK1 kinase. Western blot was performed to validate the mechanism. MTT and flow cytometry were practiced to investigate the effect of shikonin against pancreatic cancer cells. The results show that shikonin significantly inhibited the activity of PAK1 kinase with IC50 value of 7.252 ± 0.054 μM. Molecular docking studies showed that shikonin binds to the ATP-binding pocket of the PAK1 kinase domain. Moreover, shikonin inhibited PAK1 activation and its downstream signaling pathway proteins, while reducing proliferation and inducing apoptosis of pancreatic cancer cells. Further studies showed that the treatment of shikonin sensitized pancreatic cancer cells to chemotherapeutic drugs. These results suggest that shikonin, a potential natural inhibitor targeting PAK1 kinase, has promising potent applications in the treatment of pancreatic cancer and chemotherapy sensitization.  相似文献   

5.
Lung cancer, especially adenocarcinoma, is the second most occurring and highest fatality-causing cancer worldwide. Many natural anticancer compounds, such as sesquiterpene lactones (SLs), show promising anticancer properties. Herein, we examined Lactucin, an SL from the plant Cichorium intybus, for its cytotoxicity, apoptotic-inducing, cell cycle inhibiting capacity, and associated protein expression. We also constructed a biotinylated Lactucin probe to isolate interacting proteins and identified them. We found that Lactucin stops the proliferation of A549 and H2347 lung adenocarcinoma cell lines while not affecting normal lung cell MRC5. It also significantly inhibits the cell cycle at G0/G1 stage and induces apoptosis. The western blot analysis shows that Lactucin downregulates the MAPK pathway, cyclin, and cyclin-dependent kinases, inhibiting DNA repair while upregulating p53, p21, Bax, PTEN, and downregulation of Bcl-2. An increased p53 in response to DNA damage upregulates p21, Bax, and PTEN. In an activity-based protein profiling (ABPP) analysis of A549 cell’s protein lysate using a biotinylated Lactucin probe, we found that Lactucin binds PGM, PKM, and LDHA PDH, four critical enzymes in central carbon metabolism in cancer cells, limiting cancer cells in its growth; thus, Lactucin inhibits cancer cell proliferation by downregulating the MAPK and the Central Carbon Metabolism pathway.  相似文献   

6.
Novel therapeutic strategies for ovarian cancer treatment are in critical need due to the chemoresistance and adverse side effects of platinum-based chemotherapy. Theasaponin E1 (TSE1) is an oleanane-type saponin from Camellia sinensis seeds. Its apoptosis-inducing, cell cycle arresting and antiangiogenesis activities against platinum-resistant ovarian cancer cells were elucidated in vitro and using the chicken chorioallantoic membrane (CAM) assay. The results showed that TSE1 had more potent cell growth inhibitory effects on ovarian cancer OVCAR-3 and A2780/CP70 cells than cisplatin and was lower in cytotoxicity to normal ovarian IOSE-364 cells. TSE1 significantly induced OVCAR-3 cell apoptosis via the intrinsic and extrinsic apoptotic pathways, slightly arresting cell cycle at the G2/M phase, and obviously inhibited OVCAR-3 cell migration and angiogenesis with reducing the protein secretion and expression of vascular endothelial growth factor (VEGF). Western bolt assay showed that Serine/threonine Kinase (Akt) signaling related proteins including Ataxia telangiectasia mutated kinase (ATM), Phosphatase and tensin homolog (PTEN), Akt, Mammalian target of rapamycin (mTOR), Ribosome S6 protein kinase (p70S6K) and e IF4E-binding protein 1(4E-BP1) were regulated, and Hypoxia inducible factor-1α (HIF-1α) protein expression was decreased by TSE1 in OVCAR-3 cells. Moreover, TSE1 treatment potently downregulated protein expression of the Notch ligands including Delta-like protein 4 (Dll4) and Jagged1, and reduced the protein level of the intracellular domain (NICD) of Notch1. Combination treatment of TSE1 with the Notch1 signaling inhibitor tert-butyl (2S)-2-[[(2S)-2-[[2-(3,5-difluorophenyl)acetyl]amino]propanoyl]amino]-2-phenylacetate (DAPT), or the Akt signaling inhibitor wortmannin, showed a stronger inhibition toward HIF-1α activation compared with single compound treatment. Taken together, TSE1 might be a potential candidate compound for improving platinum-resistant ovarian cancer treatment via Dll4/Jagged1-Notch1-Akt-HIF-1α axis.  相似文献   

7.
Food extract supplements, with high functional activity and low side effects, play a recognized role in the adjunctive therapy of human colorectal cancer. The present study reported a new functional beverage, which is a type of Chinese Hakka stir-fried green tea (HSGT) aged for several years. The extracts of the lyophilized powder of five HSGT samples with different aging periods were analyzed with high-performance liquid chromatography. The major components of the extract were found to include polyphenols, catechins, amino acids, catechins, gallic acid and caffeine. The tea extracts were also investigated for their therapeutic activity against human colorectal cancer cells, HT-29, an epithelial cell isolated from the primary tumor. The effect of different aging time of the tea on the anticancer potency was compared. Our results showed that, at the cellular level, all the extracts of the aged teas significantly inhibited the proliferation of HT-29 in a concentration-dependent manner. In particular, two samples prepared in 2015 (15Y, aged for 6 years) and 2019 (19Y, aged for 2 years) exhibited the highest inhibition rate for 48 h treatment (cell viability was 50% at 0.2 mg/mL). Further, all the aged tea extracts examined were able to enhance the apoptosis of HT-29 cells (apoptosis rate > 25%) and block the transition of G1/S phase (cell-cycle distribution (CSD) from <20% to >30%) population to G2/M phase (CSD from nearly 30% to nearly 10%) at 0.2 mg/mL for 24 h or 48 h. Western blotting results also showed that the tea extracts inhibited cyclin-dependent kinases 2/4 (CDK2, CDK4) and CylinB1 protein expression, as well as increased poly ADP-ribose polymerase (PRAP) expression and Bcl2-associated X (Bax)/B-cell lymphoma-2 (Bcl2) ratio. In addition, an upstream signal of one of the above proteins, phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signalling, was found to be involved in the regulation, as evidenced by the inhibition of phosphorylated PI3K and AKT by the extracts of the aged tea. Therefore, our study reveals that traditional Chinese aged tea (HSGT) may inhibit colon cancer cell proliferation, cell-cycle progression and promoted apoptosis of colon cancer cells by inactivating PI3K/AKT signalling.  相似文献   

8.
Previous research reported that the curcumin derivative (CU17) inhibited several cancer cell growths in vitro. However, its anticancer potential against human lung cancer cells (A549 cell lines) has not yet been evaluated. The purpose of this research was to examine the HDAC inhibitory and anti-cancer activities of CU17 compared to curcumin (CU) in A549 cells. An in vitro study showed that CU17 had greater HDAC inhibitory activity than CU. CU17 inhibited HDAC activity in a dose dependent manner with the half-maximal inhibitory concentration (IC50) value of 0.30 ± 0.086 µg/mL against HDAC enzymes from HeLa nuclear extract. In addition, CU17 could bind at the active pockets of both human class I HDACs (HDAC1, 2, 3, and 8) and class II HDACs (HDAC4, 6, and 7) demonstrated by molecular docking studies, and caused hyperacetylation of histone H3 (Ac-H3) in A549 cells shown by Western blot analysis. MTT assay indicated that both CU and CU17 suppressed A549 cell growth in a dose- and time-dependent manner. Besides, CU and CU17 induced G2/M phase cell cycle arrest and p53-independent apoptosis in A549 cells. Both CU and CU17 down-regulated the expression of p53, p21, Bcl-2, and pERK1/2, but up-regulated Bax expression in this cell line. Although CU17 inhibited the growth of lung cancer cells less effectively than CU, it showed less toxicity than CU for non-cancer cells. Accordingly, CU17 is a promising agent for lung cancer treatment. Additionally, CU17 synergized the antiproliferative activity of Gem in A549 cells, indicating the possibility of employing CU17 as an adjuvant treatment to enhance the chemotherapeutic effect of Gem in lung cancer.  相似文献   

9.
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal form of cancer characterized by drug resistance, urging new therapeutic strategies. In recent years, protein kinases have emerged as promising pharmacological targets for the treatment of several solid and hematological tumors. Interestingly, cyclin-dependent kinase 1 (CDK1) is overexpressed in PDAC tissues and has been correlated to the aggressive nature of these tumors because of its key role in cell cycle progression and resistance to the induction of apoptosis. For these reasons, CDK1 is one of the main causes of chemoresistance, representing a promising pharmacological target. In this study, we report the synthesis of new 1,2,4-oxadiazole compounds and evaluate their ability to inhibit the cell growth of PATU-T, Hs766T, and HPAF-II cell lines and a primary PDAC cell culture (PDAC3). Compound 6b was the most active compound, with IC50 values ranging from 5.7 to 10.7 µM. Molecular docking of 6b into the active site of CDK1 showed the ability of the compound to interact effectively with the adenosine triphosphate binding pocket. Therefore, we assessed its ability to induce apoptosis (which increased 1.5- and 2-fold in PATU-T and PDAC3 cells, respectively) and to inhibit CDK1 expression, which was reduced to 45% in Hs766T. Lastly, compound 6b passed the ADME prediction, showing good pharmacokinetic parameters. These data demonstrate that 6b displays cytotoxic activity, induces apoptosis, and targets CDK1, supporting further studies for the development of similar compounds against PDAC.  相似文献   

10.
Libertellenone H (LH), a marine-derived pimarane diterpenoid isolated from arctic fungus Eutypella sp. D-1, has shown effective cytotoxicity on a range of cancer cells. The present study is to explore the anticancer effect of LH on human pancreatic cancer cells and to investigate the intracellular molecular target and underlying mechanism. As shown, LH exhibited anticancer activity in human pancreatic cancer cells by promoting cell apoptosis. Mechanistic studies suggested that LH-induced reactive oxygen species (ROS) accumulation was responsible for apoptosis as antioxidant N-acetylcysteine (NAC) and antioxidant enzyme superoxide dismutase (SOD) antagonized the inhibitory effect of LH. Zymologic testing demonstrated that LH inhibited Trx system but had little effect on the glutathione reductase and glutaredoxin. Mass spectrometry (MS) analysis revealed that the mechanism of action was based on the direct conjugation of LH to the Cys32/Cys35 residue of Trx1 and Sec498 of TrxR, leading to a decrease in the cellular level of glutathione (GSH) and activation of downstream ASK1/JNK signaling pathway. Taken together, our findings revealed LH was a marine derived inhibitor of Trx system and an anticancer candidate.  相似文献   

11.
Highly expressible bacteriorhodopsin (HEBR) is a light-triggered protein (optogenetic protein) that has seven transmembrane regions with retinal bound as their chromophore to sense light. HEBR has controllable photochemical properties and regulates activity on proton pumping. In this study, we generated HEBR protein and incubated with lung cancer cell lines (A549 and H1299) to evaluate if there was a growth-inhibitory effect with or without light illumination. The data revealed that the HEBR protein suppressed cell proliferation and induced the G0/G1 cell cycle arrest without light illumination. Moreover, the migration abilities of A549 and H1299 cells were reduced by ~17% and ~31% after incubation with HEBR (40 μg/mL) for 4 h. The Snail-1 gene expression level of the A549 cells was significantly downregulated by ~50% after the treatment of HEBR. In addition, HEBR significantly inhibited the gene expression of Sox-2 and Oct-4 in H1299 cells. These results suggested that the HEBR protein may inhibit cell proliferation and cell cycle progression of lung cancer cells, reduce their migration activity, and suppress some stemness-related genes. These findings also suggested the potential of HEBR protein to regulate the growth and migration of tumor cells, which may offer the possibility for an anticancer drug.  相似文献   

12.
Chronic stress has been reported to stimulate the release of catecholamines, including norepinephrine (NE) and epinephrine (E), which promote cancer progression by activating the adrenergic receptor (AR). Although previous studies showed that β2-AR mediated chronic stress-induced tumor growth and metastasis, the underlying mechanism has not been fully explored. In this study, we aimed to investigate the molecular mechanism by which β2-AR exerts a pro-metastatic function in hepatocarcinoma (HCC) cells and breast cancer (BC) cells. Our results showed that Hep3B human HCC cells and MDA-MB-231 human BC cells exhibited the highest ADRB2 expression among diverse HCC and BC cell lines. NE, E, and isoprenaline (ISO), adrenergic agonists commonly increased the migration and invasion of Hep3B cells and MDA-MB-231 cells. The phosphorylation level of Src was significantly increased by E/NE. Dasatinib, a Src kinase inhibitor, blocked E/NE-induced migration and invasion, indicating that AR agonists enhanced the mobility of cancer cells by activating Src. ADRB2 knockdown attenuated E/NE-induced Src phosphorylation, as well as the metastatic ability of cancer cells, suggesting the essential role of β2-AR. Taken together, our results demonstrate that chronic stress-released catecholamines promoted the migration and invasion of HCC cells and BC cells via β2-AR-mediated Src activation.  相似文献   

13.
Hispolon, a polyphenol compound isolated from Phellinus linteus, has been reported to exhibit antioxidant, antiproliferative, and antitumor activities. This study aimed to explore the antitumor effects of hispolon on glioblastoma multiforme (GBM) cells in vitro and in vivo. The results revealed that hispolon significantly inhibited GBM cell proliferation and induced apoptosis through caspase-9 and caspase-3 activation and PARP cleavage. Hispolon also induced cell cycle G2/M phase arrest in GBM cells, as supported by flow cytometry analysis and confirmed by a decrease in cyclin B1, cdc2, and cdc25c protein expressions in a dose- and time-dependent manner. Furthermore, hispolon suppressed the migration and invasion of GBM cells by modulating epithelial–mesenchymal transition (EMT) markers via wound healing, transwell assays, and real-time PCR. Moreover, hispolon significantly reduced tumor growth in DBTRG xenograft mice and activated caspase-3 in hispolon-treated tumors. Thus, our findings revealed that hispolon is a potential candidate for the treatment of GBM.  相似文献   

14.
The orphan nuclear receptor 4A1 (NR4A1) is overexpressed in pancreatic cancer and exhibits pro-oncogenic activity, and NR4A1 silencing and treatment with its inactivators has been shown to inhibit pancreatic cancer cells and tumor growth. In this study, we identified broussochalcone A (BCA) as a new NR4A1 inhibitor and demonstrated that BCA inhibits cell growth partly by inducing NR4A1-mediated apoptotic pathways in human pancreatic cancer cells. BCA downregulated specificity protein 1 (Sp1)-mediated expression of an anti-apoptotic protein, survivin, and activated the endoplasmic reticulum (ER) stress-mediated apoptotic pathway. These results suggest that NR4A1 inactivation contributes to the anticancer effects of BCA, and that BCA represents a potential anticancer agent targeting NR4A1 that is overexpressed in many types of human cancers.  相似文献   

15.
Ovarian cancer (OC) is the single most lethal gynecologic malignancy. Cannabis sativa is used to treat various medical conditions, and is cytotoxic to a variety of cancer types. We sought to examine the effectiveness of different combinations of cannabis compounds against OC. Cytotoxic activity was determined by XTT assay on HTB75 and HTB161 cell lines. Apoptosis was determined by flow cytometry. Gene expression was determined by quantitative PCR and protein localization by confocal microscopy. The two most active fractions, F5 and F7, from a high Δ9–tetrahydrocannabinol (THC) cannabis strain extract, and their standard mix (SM), showed cytotoxic activity against OC cells and induced cell apoptosis. The most effective phytocannabinoid combination was THC+cannabichromene (CBC)+cannabigerol (CBG). These fractions acted in synergy with niraparib, a PARP inhibitor, and were ~50-fold more cytotoxic to OC cells than to normal keratinocytes. The F7 and/or niraparib treatments altered Wnt pathway-related gene expression, epithelial–mesenchymal transition (EMT) phenotype and β-catenin cellular localization. The niraparib+F7 treatment was also effective on an OC patient’s cells. Given the fact that combinations of cannabis compounds and niraparib act in synergy and alter the Wnt signaling pathway, these phytocannabinoids should be examined as effective OC treatments in further pre-clinical studies and clinical trials.  相似文献   

16.
Pancreatic cancers are among of the most lethal types of neoplasms, and are mostly detected at an advanced stage. Conventional treatment methods such as chemotherapy or radiotherapy often do not bring the desired therapeutic effects. For this reason, natural compounds are increasingly being used as adjuvants in cancer therapy. Polyphenolic compounds, including resveratrol, are of particular interest. The aim of this study is to analyze the antiproliferative and pro-apoptotic mechanisms of resveratrol on human pancreatic cells. The study was carried out on three human pancreatic cancer cell lines: EPP85-181P, EPP85-181RNOV (mitoxantrone-resistant cells) and AsPC-1, as well as the normal pancreatic cell line H6c7. The cytotoxicity of resveratrol in the tested cell lines was assessed by the colorimetric method (MTT) and the flow cytometry method. Three selected concentrations of the compound (25, 50 and 100 µM) were tested in the experiments during a 48-h incubation. TUNEL and Comet assays, flow cytometry, immunocytochemistry, confocal microscopy, real-time PCR and Western Blot analyses were used to evaluate the pleiotropic effect of resveratrol. The results indicate that resveratrol is likely to be anticarcinogenic by inhibiting human pancreatic cancer cell proliferation. In addition, it affects the levels of Bcl-2 pro- and anti-apoptotic proteins. However, it should be emphasized that the activity of resveratrol was specific for each of the tested cell lines, and the most statistically significant changes were observed in the mitoxantrone-resistant cells.  相似文献   

17.
In this paper, two new iridium (III) complexes, [Ir(ppy)2(ipbp)](PF6) (Ir1) (ppy = 2-phenylpyridine, ipbp = 3-(1H-imidazo[4,5-f][1,10]phenanthrolin-2yl)-4H-chromen-4-one) and [Ir(bzq)2(ipbp)](PF6) (Ir2) (bzq = benzo[h]quinolone), were synthesized and characterized. The cytotoxicity of the complexes against human colon cancer HCT116 and normal LO2 cells was evaluated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. The complexes Ir1 and Ir2 show high cytotoxic efficacy toward HCT116 cells with a low IC50 value of 1.75 ± 0.10 and 6.12 ± 0.2 µM. Interestingly, Ir1 only kills cancer cells, not normal LO2 cells (IC50 > 200 µM). The inhibition of cell proliferation and migration were investigated by multiple tumor spheroid (3D) and wound healing experiments. The cellular uptake was explored under a fluorescence microscope. The intracellular reactive oxygen species (ROS), change of mitochondrial membrane potential, glutathione (GSH) and adenine nucleoside triphosphate (ATP) were studied. Apoptosis and cell cycle arrest were performed by flow cytometry. The results show that the complexes induce early apoptosis and inhibit the cell proliferation at the G0/G1 phase. Additionally, the apoptotic mechanism was researched by Western blot analysis. The results obtained demonstrate that the complexes cause apoptosis in HCT116 cells through ROS-mediated mitochondrial dysfunction and the inhibition of PI3K/AKT signaling pathways.  相似文献   

18.
19.
Pancreatic cancer is the seventh leading cause of cancer-related death worldwide and is known as “the king of cancers”. Currently, gemcitabine (GEM) as the clinical drug of choice for chemotherapy of advanced pancreatic cancer has poor drug sensitivity and ineffective chemotherapy. Nardoguaianone L (G-6) is a novel guaiane-type sesquiterpenoid isolated from Nardostachys jatamansi DC., and it exhibits anti-tumor activity. Based on the newly discovered G-6 with anti-pancreatic cancer activity in our laboratory, this paper aimed to evaluate the potential value of the combination of G-6 and GEM in SW1990 cells, including cell viability, cell apoptosis, colony assay and tandem mass tags (TMT) marker-based proteomic technology. These results showed that G-6 combined with GEM significantly inhibited cell viability, and the effect was more obvious than that with single drug. In addition, the use of TMT marker-based proteomic technology demonstrated that the AGE-RAGE signaling pathway was activated after medication-combination. Furthermore, reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) assays were used to validate the proteomic results. Finally, apoptosis was detected by flow cytometry. In conclusion, G-6 combined with GEM induced an increase in ROS level and a decrease in MMP in SW1990 cells through the AGE-RAGE signaling pathway, ultimately leading to apoptosis. G-6 improved the effect of GEM chemotherapy and may be used as a potential combination therapy for pancreatic cancer.  相似文献   

20.
Lung cancer is the most commonly diagnosed malignant cancer in the world. Non-small-cell lung cancer (NSCLC) is the major category of lung cancer. Although effective therapies have been administered, for improving the NSCLC patient’s survival, the incident rate is still high. Therefore, searching for a good strategy for preventing NSCLC is urgent. Traditional Chinese medicine (TCM) are brilliant materials for cancer chemoprevention, because of their high biological safety and low cost. Bavachinin, which is an active flavanone of Proralea corylifolia L., possesses anti-inflammation, anti-angiogenesis, and anti-cancer activities. The present study’s aim was to evaluate the anti-cancer activity of bavachinin on NSCLC, and its regulating molecular mechanisms. The results exhibited that a dose-dependent decrease in the cell viability and colony formation capacity of three NSCLC cell lines, by bavachinin, were through G2/M cell cycle arrest induction. Meanwhile, the expression of the G2/M cell cycle regulators, such as cyclin B, p-cdc2Y15, p-cdc2T161, and p-wee1, was suppressed. With the dramatic up-regulation of the cyclin-dependent kinase inhibitor, p21Waf1/Cip1, the expression and association of p21Waf1/Cip1 with the cyclin B/cdc2 complex was observed. Silencing the p21Waf1/Cip1 expression significantly rescued bavachinin-induced G2/M cell accumulation. Furthermore, the expression of p21Waf1/Cip1 mRNA was up-regulated in bavachinin-treated NSCLC cells. In addition, MAPK and AKT signaling were activated in bavachinin-added NSCLC cells. Interestingly, bavachinin-induced p21Waf1/Cip1 expression was repressed after restraint p38 MAPK activation. The inhibition of p38 MAPK activation reversed bavachinin-induced p21Waf1/Cip1 mRNA expression and G2/M cell cycle arrest. Collectively, bavachinin-induced G2/M cell cycle arrest was through the p38 MAPK-mediated p21Waf1/Cip1-dependent signaling pathway in the NSCLC cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号