首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The self‐assembly of NiCl2·6H2O with a diaminodiamide ligand 4,8‐diazaundecanediamide (L‐2,3,2) gave a [Ni(C9H20N4O2)(Cl)(H2O)] Cl·2H2O ( 1 ). The structure of 1 was characterized by single‐crystal X‐ray diffraction analysis. Structural data for 1 indicate that the Ni(II) is coordinated to two tertiary N atoms, two O atoms, one water and one chloride in a distorted octahedral geometry. Crystal data for 1: orthorhombic, space group P 21nb, a = 9.5796(3) Å, b = 12.3463(4) Å, c = 14.6305(5) Å, Z = 4. Through NH···Cl–Ni (H···Cl 2.42 Å, N···Cl 3.24 Å, NH···Cl 158°) and OH···Cl–Ni contacts (H···Cl 2.36 Å, O···Cl 3.08 Å, OH···Cl 143°), each cationic moiety [Ni(C9H20N4O2) (Cl)(H2O)]+ in 1 is linked to neighboring ones, producing a charged hydrogen‐bonded 1D chainlike structure. Thermogrametric analysis of compound 1 is consistent with the crystallographic observations. The electronic absorption spectrum of Ni(L‐2,3,2)2+ in aqueous solution shows four absorption bands, which are assigned to the 3A2g3T2g, 3T2g1Eg, 3T2g3T1g, and 3A2g3T1g transitions of triplet‐ground state, distorted octahedral nickel(II) complex. The cyclic volammetric measurement shows that Ni2+ is more easily reduced than Ni(L‐2,3,2)2+ in aqueous solution.  相似文献   

2.
The reactions of different nickel(II) salts with a mixed‐donor macrocyclic ligand L (6,7,8,9,10,11,18,19‐octahydro‐5H, 17H‐dibenzo[f,o][1,5,9,13] dioxadiazacyclohexadecin‐18‐ol), potentially pentadentate N2O3 donor sets containing one pendant alcohol function have been investigated. The physical properties and the chemical structures of 1:1 (metal:ligand) NiLX2 (X = Cl?, Br?, NO3?, ClO4?) complexes have been characterized by using IR, UV‐Vis spectroscopy and conductance measurements. The X‐ray determination have been employed to probe the nature of the respective complexes in solid state. The nickel atom in [NiL(NO3)]NO3·0.5H2O complex is six‐coordinate with a distorted octahedral coordination in which the all N2O3 donor atoms are coordinated to the nickel atom. The coordination sphere is completed by a nitrate anion. In contrast to the above nickel complex, in [NiLCl2] complex the pendant hydroxyl arm of macrocycle remains uncoordinated and ligand acts as tetradentate N2O2 donor atoms. The coordination sphere is completed by two chloride anions and the nickel atom is six‐coordinate with a distorted octahedral coordination.  相似文献   

3.
Planar nickel(II) complexes involving N‐(2‐Hydroxyethyl)‐N‐methyldithiocarbamate, such as [NiX(nmedtc)(PPh3)] (X = Cl, NCS; PPh3 = triphenylphosphine), and [Ni(nmedtc)(P‐P)]ClO4(P‐P = 1,1‐bis(diphenylphosphino)methane(dppm); 1,3‐bis(diphenylphosphino)propane (1,3‐dppp); 1,4‐bis(diphenylphosphino)butane(1,4‐dppb) have been synthesized. The complexes have been characterized by elemental analyses, IR and electronic spectroscopies. The increased νC–N value in all the complexes is due to the mesomeric drift of electrons from the dithiocarbamate ligands to the metal atom. Single crystal X‐ray structure of [Ni(nmedtc)(1,3‐dppp)]ClO4·H2O is reported. In the present 1,3‐dppp chelate, the P–Ni–P angle is higher than that found in 1,2‐bis(diphenylphosphino)ethane‐nickel chelates and lower than 1,4‐bis(diphenylphosphino)butane‐nickel chelates, as a result of presence of the flexible propyl back bone connecting the two phosphorus atoms of the complex.  相似文献   

4.
Two dinuclear succinato‐bridged nickel(II) complexes [Ni(RR‐L)]2(μ‐SA)(ClO4)2 ( 1 ) and [Ni(SS‐L)]2(μ‐SA)(ClO4)2 ( 2 ) (L = 5, 5, 7, 12, 12, 14‐hexamethyl‐1, 4, 8, 11‐tetraazacyclotetradecane, SA = succinic acid) were synthesized and characterized by EA, Circular dichroism (CD), as well as IR and UV/Vis spectroscopy. Single crystal X‐ray diffraction analyses revealed that the NiII atoms display a distorted octahedral coordination arrangement, and the succinato ligand bridges two central NiII atoms in a bis bidentate fashion to form dimers in 1 and 2 . The monomers of {[Ni(RR‐L)]2(μ‐SA)}2+ and {[Ni(SS‐L)]2(μ‐SA)}2+ are connected by O–H ··· O and N–H ··· O hydrogen bonds into a 1D right‐handed and left‐handed helical chain along the b axis, respectively. The homochiral natures of 1 and 2 are confirmed by the results of CD spectroscopy.  相似文献   

5.
The novel dinuclear Ni2+ complex [Ni2(μ‐Cl)(μ‐OAc) (EGTB)]·Cl·ClO4·2CH3OH, where EGTB is N, N, N′, N′‐tetrakis (2‐benzimidazolyl methyl‐1, 4‐di‐ethylene amino)glycol ether, crystallizes in the orthorhombic space group Pnma with a = 15.272(2), b = 14.768(2), c = 22.486(3) Å, V = 5071.4(12) Å3, Z = 4, Dcalc = 1.414 g cm?3, and is bridged by triply bridging agents of a chloride ion, an acetate and an intra‐ligand (‐OCH2CH2O‐) group. The nickel coordination geometry is that of a slightly distorted octahedron with a NiN3O2Cl arrangement of the ligand donor atoms. The Ni–Cl distance is 2.361(2) Å, and two Ni–O distances are 1.996(5) and 2.279(6) Å. The three Ni–N distances are 2.033(7), 2.060(6), and 2.166(6) Å with the Ni–N bond trans to an ether oxygen the shortest, the Ni–N bond trans to an acetate oxygen the middle and the Ni–N bond trans to Cl the longest.  相似文献   

6.
两种镍的配合物[Ni(NH2CH2CH2CH2NH2)3]Cl2 (1)和[Ni(C6H4N2H4)2Cl2] (2)已经被合成并且通过红外和单晶X射线衍射分析对其进行了表征。在配合物1中,镍原子处于手性假八面体[NiN6]的几何构型中,它与三个1,3-丙二胺分子形成了三个六元环。在配合物2中,镍原子除了与两个o-苯二胺分子通过四个Ni-N键形成两个五元环外,它还与两个Cl原子配位形成了反式Ni-Cl2,这不同于以往报道过的镍的二胺配合物。这两个镍的配合物被MAO, MMAO或Et2AlCl活化后,对乙烯的二聚合或三聚合显示了很好的催化活性[对于配合物2,催化活性达到3.59×106 g mol-1 (Ni) h-1]。  相似文献   

7.
A series of 8‐(2,6‐dibenzhydryl‐4‐R‐phenylimino)‐5,6,7‐trihydroquinoline ligands have been prepared in which the nature of 4‐R substitutions vary from electron withdrawing to electron donating. The treatment with NiCl2.6H2O or (DME)NiBr2 afforded the corresponding complexes of nickel chloride (4‐R = Me Ni1 , Et Ni2 , tBu Ni3 , CHPh2 Ni4 , Cl Ni5 , and F Ni6 ) and nickel bromide (4‐R = Me Ni7 , Et Ni8 , tBu Ni9 , CHPh2 Ni10 , Cl Ni11 , and F Ni12 ). X‐ray diffraction study of complexes Ni3 , Ni6 , and Ni10 , revealed that Ni3.1/2H2O and Ni6.H2O adopted unsymmetrical and symmetrical chloride‐bridged dinuclear structures respectively, while Ni10.H2O is found as mononuclear specie forming distorted‐square planer geometry. In the presence of either diethylaluminum chloride (Et2AlCl) or modified methylaluminoxane (MMAO), all the nickel complexes ( Ni1–Ni12 ) displayed high activities (up to 1.91 × 106 g(PE) mol (Ni)−1h−1. Highly branched polyethylene waxes with low molecular weights (Mw ≤ 2.6 kg/mol) and narrow molecular weights distributions (Mw/Mn ≤ 1.96) incorporated with vinylene and vinyl groups were obtained. The effects of 4‐R substitutions to the nickel chloride and bromide pre‐catalysts and reaction conditions on the catalytic performance and the properties of the resulting polyethylene were the subject of a detail investigation. The positive influences of using electron‐withdrawing 4‐R substitutions and bromides were observed. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1269–1281  相似文献   

8.
The mononuclear complex, [NiCl2 (trzCH2CH2COPh)4]·6H2O (trz =1,2,4‐triazole), was synthesized and its structure was determined by single crystal X‐ray determination. It crystallizes in the monoclinic system, space group P21/c, with lattice parameters: a = 0.80391(2) nm, b = 1.08215(2) tun, c = 2.90133(2) nm, β = 94.792 (1)° and Z = 2. Each nickel atom is coordinated by four N atoms of triazole from four β‐(1,2,4‐triazole‐1‐yl)propiophenone ligands and two chloride anions in trans arrangement with octahedral coordination geometry. In addition to the coordinating nickel complex, there are six uncoordinated water molecules. The Ni‐Cl distance is 0.24865(8) nm and the Ni‐N distances are in the range of 0.2072(2) to 0.2099(2) nm, respectively. In the solid state, the title compound forms three dimensional network structure through hydrogen bonds. The intermolecular hydrogen bonds connect the [NiCl2(C2H2N3CH2CH2COPh)4] and H2O moieties. The deep green crystals were also examined by elemental analysis, FT‐IR and UV spectra, which are in agreement with the structural data.  相似文献   

9.
In the title compound, [Ni(C19H20N2O4)(H2O)2], the Ni atom has a distorted octahedral coordination geometry in which the tetradentate Schiff base ligand acts as a cis‐N2O2 donor defining an equatorial plane, and water mol­ecules occupy the axial positions. The two parts of the mol­ecule are related by a mirror plane that passes through the Ni atom and is perpendicular to the equatorial plane. The angular distortions from normal octahedral geometry are in the range 1–6°, and the equatorial plane, defined by the donor atoms of the Schiff base, is almost square planar. The six‐membered ring comprising the Ni, the imine N and the propyl­ene C atoms adopts a half‐chair conformation. The Ni—O [2.017 (2) Å] and Ni—N [2.071 (2) Å] distances are within the ranges expected for high‐spin octahedral nickel complexes.  相似文献   

10.
The nickel(II) N‐benzyl‐N‐methyldithiocarbamato (BzMedtc) complexes [Ni(BzMedtc)(PPh3)Cl] ( 1 ), [Ni(BzMedtc)(PPh3)Br] ( 2 ), [Ni(BzMedtc)(PPh3)I] ( 3 ), and [Ni(BzMedtc)(PPh3)(NCS)] ( 4 ) were synthesized using the reaction of [Ni(BzMedtc)2] and [NiX2(PPh3)2] (X = Cl, Br, I and NCS). Subsequently, complex 1 was used for the preparation of [Ni(BzMedtc)(PPh3)2]ClO4 ( 5 ), [Ni(BzMedtc)(PPh3)2]BPh4 ( 6 ), and [Ni(BzMedtc)(PPh3)2]PF6 ( 7 ). The obtained complexes 1 – 7 were characterized by elemental analysis, thermal analysis and spectroscopic methods (IR, UV/Vis, 31P{1H} NMR). The results of the magnetochemical and molar conductivity measurements proved the complexes as diamagnetic non‐electrolytes ( 1 – 4 ) or 1:1 electrolytes ( 5 – 7 ). The molecular structures of 4 and 5· H2O were determined by a single‐crystal X‐ray analysis. In all cases, the NiII atom is tetracoordinated in a distorted square‐planar arrangement with the S2PX, and S2P2 donor set, respectively. The catalytic influence of selected complexes 1 , 3 , 5 , and 6 on graphite oxidation was studied. The results clearly indicated that the presence of the products of thermal degradation processes of the mentioned complexes has impact on the course of graphite oxidation. A decrease in the oxidation start temperatures by about 60–100 °C was observed in the cases of all the tested complexes in comparison with pure graphite.  相似文献   

11.
Although it has not proved possible to crystallize the newly prepared cyclam–methylimidazole ligand 1‐[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane (LIm1), the trans and cis isomers of an NiII complex, namely trans‐aqua{1‐[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane}nickel(II) bis(perchlorate) monohydrate, [Ni(C15H30N6)(H2O)](ClO4)2·H2O, (1), and cis‐aqua{1‐[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane}nickel(II) bis(perchlorate), [Ni(C15H30N6)(H2O)](ClO4)2, (2), have been prepared and structurally characterized. At different stages of the crystallization and thermal treatment from which (1) and (2) were obtained, a further two compounds were isolated in crystalline form and their structures also analysed, namely trans‐{1‐[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane}(perchlorato)nickel(II) perchlorate, [Ni(ClO4)(C15H30N6)]ClO4, (3), and cis‐{1,8‐bis[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane}nickel(II) bis(perchlorate) 0.24‐hydrate, [Ni(C20H36N6)](ClO4)2·0.24H2O, (4); the 1,8‐bis[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane ligand is a minor side product, probably formed in trace amounts in the synthesis of LIm1. The configurations of the cyclam macrocycles in the complexes have been analysed and the structures are compared with analogues from the literature.  相似文献   

12.
In the title compound, [NiCl2(C15H26N2)], the chiral alkaloid (6R,7S,8S,14S)‐(−)‐l ‐sparteine acts as a bidentate ligand, with two chloride ligands occupying the remaining coordination sites, producing a slightly distorted tetrahedron. The N—Ni—N plane in the title complex is twisted by 81.31 (11)° from the Cl—Ni—Cl plane. Other distortions of the tetrahedron are discussed.  相似文献   

13.
Three coordination polymers, namely [Co(BDC)( L )] · H2O ( 1 ), [Co(NPH)( L )] · H2O ( 2 ), and [Ni(NPH)( L )(H2O)3] · H2O ( 3 ) [H2BDC = 1, 3‐benzenedicarboxylic acid, H2NPH = 3‐nitrophthalic acid, L = N,N′‐bis(3‐pyridyl)‐terephthalamide] were hydrothermally synthesized by self‐assembly of cobalt/nickel chloride with a semi‐rigid bis‐pyridyl‐bis‐amide ligand and two aromatic dicarboxylic acids. Single crystal X‐ray diffraction analyses revealed that complexes 1 and 2 are two‐dimensional (2D) coordination polymers containing a one‐dimensional (1D) ribbon‐like Co‐dicarboxylate chain and a 1D zigzag Co‐ L chain. Although the coordination numbers of CoII ions and the coordination modes of two dicarboxylates are different in complexes 1 and 2 , they have a similar 3, 5‐connected {42.67.8}{42.6} topology. In complex 3 , the adjacent NiII ions are linked by L ligands to form a 1D polymeric chain, whereas the 1D chains does not extend into a higher‐dimensional structure due to the ligand NPH with monodentate coordination mode. The adjacent layers of complexes 1 and 2 and the adjacent chains of 3 are further linked by hydrogen bonding interactions to form 3D supramolecular networks. Moreover, the thermal stabilities, fluorescent properties, and photocatalytic activities of complexes 1 – 3 were studied.  相似文献   

14.
Three copper(II) complexes of the polydentate N‐donor ligand [4‐(4,6‐bis(1H‐pyrazol‐1‐yl)‐1,3,5‐triazin‐2‐yl)morpholine] (L) with chlorides, nitrates, and perchlorates as anions, namely, [CuCl2(L)] · 0.5(MeCN) ( 1 ), [Cu(NO3)2(H2O)(L)] · (MeCN) ( 2 ), and [Cu(L)2](ClO4)2 · (MeCN) ( 3 ) were synthesized and structurally characterized by IR, elemental analysis and X‐ray crystallographic analysis. In these complexes, the L ligand binds the copper(II) cation in the tridentate N3 form. The coordination arrangement around the central copper(II) atom is distorted square‐pyramidal in 1 but it is distorted octahedral in 2 and 3 . The interesting noncovalent interactions such as hydrogen bonds, π–π stacking, and anion–π interactions present in the solid‐state structures are discussed. The crystal results reveal that the counteranions play important roles in determining the diverse structures of these complexes. Moreover, the PXRD, TG, DRS, and fluorescence properties of compounds 1 – 3 were investigated.  相似文献   

15.
The metal string complex [Ni3(dpa)4(ClO4)(Cl)] · CH2Cl2 ( 1 ) [dpa = bis(2‐pyridyl)amine] with different axial ligands was synthesized and characterized by elemental analysis, IR, UV/Vis, and fluorescence spectroscopy and TG analysis. The molecular structure was determined by single‐crystal X‐ray analysis and its electrochemical properties were investigated. This metal string complex is the first example with different axial ligands, and in its structure a different structural packing relative to the metal string complex [Ni3(dpa)4(Cl)2] ( 2 ) with two axial chloride ligands is generated. The intense C–H ··· π interactions observed for 1 provide additional stability. The axial mono‐substitution of Cl by ClO4 in 1 relative to 2 results in one obviously short Ni–Ni distance and a higher stability towards oxidation.  相似文献   

16.
The crystal structures of two classical cobalt(III) complexes comprising the [CoCl(NH3)(en)(py)2]2+ cation were determined by single‐crystal X‐ray diffraction. Both complexes, dark red [CoCl(NH3)(en)(py)2]Cl2 · H2O ( 1 ) and purple [CoCl(NH3)‐(en)(py)2][HgCl4] · 1.125H2O ( 2 ), crystallize in the triclinic space group P1 . In both compounds, the Co atom exhibits a typical octahedral coordination and the configuration index of the complex is OC‐6‐43. In the case of the chloride ( 1 ), the asymmetric unit comprises one formula unit, whereas there are two formula units in the case of the tetrachloridomercurate ( 2 ). Complex cations, anions, and crystal water molecules are interconnected by various N–H ··· N, N–H ··· Cl, N–H ··· O, O–H ··· Cl, and O–H ··· O bridge bonds. As a result, compound 1 features a two‐dimensional layer structure and compound 2 exists as a three‐dimensional network.  相似文献   

17.
The protonation and ZnII/CuII complexation constants of tripodal polyamine ligand N1‐(2‐aminoethyl)‐N1‐(1H‐imidazol‐4‐ylmethyl)‐ethane‐1,2‐diamine (HL) were determined by potentiometric titration. Three new compounds, i.e. [H3(HL)](ClO4)3 ( 5 ), [Zn(HL)Cl](ClO4) ( 6 ) and {[Zn(L)](ClO4)}n ( 7 ) were obtained by reactions of HL · 4HCl with Zn(ClO4)2 · 6H2O under different reaction pH, and they were compared with the corresponding CuII complexes reported previously. The results indicate that the reaction pH and metal ions have remarkable influence on the formation and structure of the complexes.  相似文献   

18.
The title complex, [NiCl(C12H16N3O2)2(H2O)]NO3·2CH4O·H2O, was obtained from a methano­lic solution of Ni(NO3)2·6H2O, 2‐pyridyl nitro­nyl nitro­xide (2‐NITpy) and (NEt4)2[CoCl4]. The equatorial coordination sites of the octahedral NiII centre are occupied by two chelating radical ligands, with the axial positions occupied by the Cl? and water ligands. The H2O—Ni—Cl axis of the complex lies along a crystallographic twofold axis, so that only half the cation is present in the asymmetric unit. The Ni—Cl bond length [2.3614 (17) Å] is significantly shorter than distances typical of octahedral NiII centres [2.441 (5) Å]. However, with only one nitrate anion per formula unit, the oxidation state of the metal must be assigned as NiII. The 2‐NITpy ligands bend away from the equatorial plane, forming a hydro­phobic region around the Cl atoms. Conversely, the ligated water mol­ecule forms moderately strong hydrogen bonds with the disordered methanol solvent mol­ecules, which in turn form interactions with the water of crystallization and the disordered nitrate anion. These interactions combine to give hydro­philic regions throughout the crystal structure.  相似文献   

19.
A novel Ni2+ complex with the N4‐donor tripodal ligand bis[(1‐methyl‐1H‐imidazol‐2‐yl)methyl][2‐(pyridin‐2‐yl)ethyl]amine (L), namely, aqua{bis[(1‐methyl‐1H‐imidazol‐2‐yl‐κN3)methyl][2‐(pyridin‐2‐yl‐κN)ethyl]amine‐κN}chloridonickel(II) perchlorate, [NiCl(C17H22N6)(H2O)]ClO4 or [NiCl(H2O)(L)Cl]ClO4 ( 1 ), was synthesized and characterized by spectroscopic and spectrometric methods. The crystal structure of 1 reveals an interesting and unusual cocrystallization of isomeric complexes, which are crystallographically disordered with partial occupancy of the labile cis aqua and chloride ligands. The Ni2+ centre exhibits a distorted octahedral environment, with similar bond lengths for the two Ni—N(imidazole) bonds. The bond length increases for Ni—N(pyridine) and Ni—N(amine), which is in agreement with literature examples. The bond lengths of the disordered labile sites are also in the expected range and the Ni—Cl and Ni—O bond lengths are comparable with similar compounds. The electronic, redox and solution stability behaviour of 1 were also evaluated, and the data obtained suggest the maintenance of structural integrity, with no sign of demetalation or decomposition under the studied conditions.  相似文献   

20.
Two nickel(II) complexes of vitamin B13 (H3Or) with N,N,N′,N′‐tetramethylethylenediamine (tmen) and 2,2‐dimethylpropane‐1,3‐diamine (dmpen) were synthesized and characterized by means of elemental and thermal analyses, magnetic susceptibility, and IR and UV/Vis spectroscopic studies. The crystal structures of mer‐[Ni(HOr)(H2O)2(tmen)] · H2O ( 1 ) and [Ni(HOr)(dmpen)2] ( 2 ) were determined by using single‐crystal X‐ray diffraction. In the complexes, which crystallize in the triclinic system (space group for 1 ) and the monoclinic system (space group P21/c for 2 ), the NiII ions exhibit a distorted octahedral coordination. NiII ions are chelated by the deprotonated nitrogen atom of the pyrimidine ring and the oxygen atom of the carboxylate group, the distorted octahedral coordination completed by one tmen and two aqua ligands for 1 or two dmpen ligands for 2 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号