首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 2D grid‐shaped bimetallic imidazolate polymer [CoIICuI2(Im)4];∞ ( 1 ) was solvothermally synthesized and characterized with single crystal X‐ray analysis: tetragonal space group P 21/c (No.114), a = b = 10.9513(15) Å, c = 6.3063(13) Å, V = 756.3(2) Å3. This is the first cobalt(II) imidazolate polymer hybridized with other transition metals.  相似文献   

2.
Two new coordination polymers, [Ni(H2O)(BDC)(bpp)]n ( 1 ) and [Co(mBDC)(bpp)]n ( 2 ) (BDC = 1,4‐benzene dicarboxylate anion; bpp = 4,4′‐trimethylene dipyridine; mBDC = 1,3‐benzene dicarboxylate anion), were synthesized by solvothermal reaction and structurally characterized. Single crystal X‐ray diffraction showed that 1 consists of an inclined interpenetration of 1D nets generating an overall 3D entanglement and compound 2 of 1D chains. The luminescent and magnetic properties of both compounds in the solid state were also investigated. Crystal data: 1 : orthorhombic, Pnna; a = 18.3648(6), b = 13.6854(4), c = 16.2307(5) Å, V = 4079.3(2) Å3, and Z = 8. Crystal data: 2 : triclinic, ; a = 8.6966(4), b = 10.1093(4), c = 11.8334(4) Å, α = 68.263(1)°, β = 82.895(1)°, γ = 78.370(1)°, V = 945.16(7) Å3, and Z = 2.  相似文献   

3.
Hydrothermal reaction of olsalazine sodium, phenanthroline and Zn(ClO4)2·6H2O in the presence of water and ethanol affords a two‐dimensional coordination polymer [Zn4(OSA)3(Phen)2(H2O)2]n ( 1 ) (OSA = olsalazine) which is characterized by single X‐ray determination, IR and UV spectrum. The local coordination around all zinc ions can be best described as a slightly distorted triangle bipyramid. Complex 1 consists of a tetrameric subunit, which is made up of four Zn atoms bridged by four O atoms. Two types of osalazine ligands can be found in the complex according to their different coordination modes of carboxyl groups. Crystal data for 1 : , a = 10.087(7), b = 12.830(9), c = 14.545(11) Å, α =114.598(10)°, β = 92.552(10)°, γ = 108.515(10)°, V = 1588(2) Å3, Z = 2, R1 = 0.0818, wR2 = 0.1855. In comparison with the free ligand, the UV spectrum of 1 in solution (H2O: EtOH = 1:1) shows a small Einstein shift probably due to the formation of coordination polymer and supramoleculer hydrogen‐bonding interactions.  相似文献   

4.
The novel multi‐ligand coordination compound [Co(IMI)4(PA)](PA) ( 1 ) was synthesized by using imidazole (IMI) and picrate (PA) and characterized by elemental analysis and FT‐IR spectroscopy. The crystal structure was determined by X‐ray single crystal diffraction and the crystallographic data showed that the compound crystallizes in the triclinic space group P$\bar{1}$ (α = 8.839(2) Å, b = 13.550(3) Å, c = 13.840(3) Å, α = 68.386(6)°, β = 88.349(9)°, and γ = 87.494(9)°). Furthermore, the CoII ion is six‐coordinated by four nitrogen atoms from four imidazole ligands and two oxygen atoms from a PA group. Its thermal decomposition mechanism was determined based on differential scanning calorimetry (DSC) and thermogravimetry‐derivative thermogravimetry (TG‐DTG) analysis. The kinetic parameters of the first exothermic process were studied by using Kissinger's and Ozawa's method, respectively. The energy of combustion and the enthalpy of formation were measured and calculated. They showed good combustion performance of the compound. Additionally, the sensitivity properties were determined with standard methods. The results of all these studies showed that [Co(IMI)4(PA)](PA) has potential application as ignition composition.  相似文献   

5.
The reaction of tetracyanidoboronic acid, H[B(CN)4], with CoCO3 or Co(OH)2 in aqueous solution leads after slow evaporation of water to single crystals of Co[B(CN)4]2 · 2H2O. The compound has been characterized by single crystal X‐ray diffraction ( , a = 12.2922(9), c = 9.2235(7) Å, Z = 4). The Co2+ ion is octahedrally coordinated by four nitrogen atoms of four different tetracyanidoborate CN groups occupying the four equatorial positions and two molecules of water occupying the remaining corners of the octahedron. The single crystal X‐ray structure, the vibrational spectra, and the thermal properties are compared with other known tetracyanidoborates with divalent cations.  相似文献   

6.
A new three‐dimensional open‐framework cobalt‐zinc phosphite [Co(H2O)4Zn(HPO3)2]·H2O ( 1 ), has been prepared under hydrothermal conditions and characterized by single‐crystal X‐ray diffraction, XRD, IR and SQUID magnetometer. The compound crystallizes in the triclinic space group with a = 7.552(5), b = 7.671(5), c = 9.443(5) Å, α = 88.538(5)°, β = 89.109(5)°, γ = 87.056(5)°, V = 546.1(6) Å3, Z = 2. The structure of 1 consists of corner‐shared (cs) four‐membered‐ring chains formed by alternating ZnO4 tetrahedra and HPO3 pseudopyramids, which are further linked through CoO2(H2O)4 octahedra giving rise to a three‐dimensional (3‐D) neutral open‐framework with intersecting 12‐ and 16‐MR channels. The synthesis of system required the presence of L‐histidine which is not incorporated into the structure of the product. It is noteworthy that compound 1 represents the only known example of purely inorganic open‐framework cobalt‐zinc phosphite.  相似文献   

7.
Oxygentation of aqueous solutions of CoIII in presence of stoichiometric amounts of N-(2-aminoethyl)ethane-1,2-diamine (dien) and 1,3-diaminopropan-2-ol (dapo) produces μ-peroxocobalt(III) dimers. Acid cleavage (HCI) yields mer-exo(H)-, mer-endo (H)-, unsym-fac-exo(OH)-, and unsym-fac-endo(OH)-[CoCl(dien)(dapo)]2+ ( A–D )(X = Cl), resp. and unsym-fac-[Co-(dien)(dapo-N,N′,O)]3+ ( G ). Isomer seperation was achieved by fractional crystallization as ZnCl and ClO salts and by ion-exchange chromatography. The corresponding bromo, azido, nitrito-O, nitro-N, thiocyanato, hydroxo, and aqua complexes were also synthesized. Optically resolved samples were prepared for chiral compounds, and the complexes were structurally characterized by X-ray analyses ($ \mathop {\it \Lambda} \limits^ \to $(?)436(CD) -A (X = N3)), ($ \mathop {\it \Delta} \limits^ \to $(?)436(CD) -B ). (X = N3), $ \mathop {\it \Delta} \limits^ \to $ (+)436(CD) -B by their chiroptical properties, and by 13C-NMR spectroscopy supported by 1H-NMR, IR, CD, and UV/VIS spectroscopy. $ \mathop {\it \Lambda} \limits^ \to $(?)436(CD)-mer-exo(H)-[Co(N3)(dien)(dapo)](hydrogen di-O-benzoyl-L-tartrate)2.4 H2O crystallizes in the orthorhombic space group P212121, a = 7.676(1) Å, b = 19.457(1) Å, c = 34.702(2) Å. $ \mathop {\it \Lambda} \limits^ \to $(?)436(CD)-mer-endo(H)-[Co(N3)(dien)(dapo)] (hydrogen di-O-benzoyl-L-tartrate)2.2.75 H2O crystallizes in the triclinic space group P1, a = 8.062(3) Å b = 10.296(1) Å, c = 15.056(2) Å, alpha = 80.55(1)°, β = 85.18(2)°, γ = 89.10(2)°. $ \mathop {\it \Delta} \limits^ \to $(+)436(CD)-mer-endo(H)-[Co(N3)(dien)(dapo)](hydrogen di-O-benzoyl-L-tartrate)2. 5.75 H2O crystallizes in the triclinic space group P1, a = 7.742(1) Å, b = 10.014(1) Å, c = 18.045(2) Å, α = 99.57(1)°, β = 92.87(1)°, γ = 102.56(1)°. The absolute configurations of the three cations were determined unambiguously. Interconversions of the various isomers and derivatives and structural, configurational, and spectroscopic aspects are discussed in detail.  相似文献   

8.
The hydrothermal reaction of Co(COO)2?·?4H2O, MoO3, H3PO4 and 4,4′-bipyridine yields bipyridine-ligated cobalt dimolybdate [CoMo2O7(4,4′-bipy)1.5] (1) (4,4′-bipy?=?4,4′-bipyridine) in the triclinic system with space group of P 1 and cell parameters of a?=?7.1951(8)?Å, b?=?11.1708(17)?Å, c?=?11.4514(11)?Å, α?=?98.545(7)°, β?=?90.315(2)°, γ?=?105.777(5)°, V?=?874.88(19)?Å3, and Z?=?2. Its structure consists of Co/Mo/O bimetal oxide layers with {Mo2O7} building blocks, linked by the coordination of 4,4′-bipy ligand with Co and Mo atoms, into a 3D porous hybrid framework.  相似文献   

9.
Three new Copper(II) polymers coordinated by both rigid and flexible ligands, [Cu(bpy)(C5H6O4)]n ( 1 ), [Cu(bpy)(C6H8O4)]n ( 2 ), and [Cu2(bpy)2(C6H8O4)2]n ( 3 ) (bpy = 4,4′‐bipyridine), have been hydrothermally synthesized and structurally characterized. Complex 1 features a box‐like bilayer motif of (4, 4) net. It crystallizes in triclinic space group with cell parameters: a = 8.1395(6) Å, b = 9.43 12(8) Å, c = 10.5473(8) Å, α = 112.1830(1)°, β = 92.423(2)°, γ = 104.752(2)°, V = 716.31(1) Å3, Z = 2. Complex 2 crystallizes in triclinic space group with a = 8.8652(4) Å, b = 8.9429(4) Å, c = 10.6390(4) Å, α = 89.520(2)°, β = 69.123(2)°, γ = 75.2440(1)°, V = 758.92(6) Å3, Z = 2. Complex 3 crystallizes in monoclinic space group Cc with a = 11.1521(1) Å, b = 15.3961(1) Å, c = 17.7419(1) Å, β = 105.715(3)°, V = 2932.4(5) Å3, Z = 4. Complexes 2 and 3 are isomeric with different coordination modes of adipato ligand. Both of them possess the two‐fold interpenetrated 3‐D pcu topological net.  相似文献   

10.
Black‐brown needle‐shaped single crystals of [Co2(en)4(O2)(OH)][C4O4]1.5 · 4H2O (en = ethylenediamine) were prepared in aqueous solution at room temperature [space group P$\bar{1}$ (no.2) with a = 800.20(8), b = 1225.48(7), c = 1403.84(9) pm, α = 100.282(5), β = 94.515(7), and γ = 95.596(6)°]. The Co3+ cations [Co(1), Co(2)] are coordinated in an octahedral manner by four nitrogen atoms stemming from the ethylenediamine molecules and two oxygen atoms each from a hydroxo group and a peroxo group, respectively. Both Co3+ coordination polyhedra are connected by a common corner and by the peroxo group leading to the dinuclear [(en)2Co(O2)(OH)Co(en)2]3+ cation. The squarate dianions, not bonded to Co3+, and the [(en)2Co(O2)(OH)Co(en)2]3+ cations are linked by hydrogen bonds forming a three‐dimensional supramolecular network containing water molecules. Magnetic measurements revealed a diamagnetic behavior indicating a low‐spin electron configuration of Co3+. The UV/Vis spectra show two LMCT bands [π*(O22–) → dσ*(Co3+)] at 274 and 368 nm and the d–d transition (1A1g1T1g) at 542 nm. Thermoanalytical investigations in air show that the compound is stable up to 120 °C. Subsequent decomposition processes to cobalt oxide are finished at 460 °C.  相似文献   

11.
Three adipato bridged mixed ligand catena complexes {[M(phen)(H2O)]‐(C6H8O4)2/2} with M = NiII ( 1 ), CuII ( 2 ), ZnII ( 3 ) were synthesized. Structure determination based on X‐ray diffraction shows that they crystallize isostructurally in the monoclinic space group C2/c (no. 15) with cell dimensions of: 1 a = 22.451(4)Å, b = 9.041(1)Å, c = 17.440(2)Å, β = 103.41(1)°, U = 3443.4(9)Å3, Z = 8; 2 a = 22.479(2)Å, b = 9.067(1)Å, c = 17.494(3)Å, β = 103.67(1)°, U = 3464.6(8)Å3, Z = 8; 3 a = 22.635(3)Å, b = 9.052(1)Å, c = 17.571(3)Å, β = 103.24(1)°, U = 3504.5(9)Å3, Z = 8. The crystal structure consists of 1D {[M(phen)(H2O)]‐(C6H8O4)2/2} zigzag chains, in which the metal atoms are all octahedrally coordinated by two N atoms of one phen ligands and four O atoms of one H2O molecule and two adipato ligands. The zigzag chains are held together by interchain π‐π stacking interactions and interchain hydrogen bonds.  相似文献   

12.
SrFe[BP2O8(OH)2] was synthesised under mild hydrothermal conditions. The crystal structure was determined from single–crystal X–ray diffraction data: triclinic, space group P (No. 2), a = 6.6704(12) Å, b = 6.6927(13) Å, c = 9.3891(19) Å, α = 109.829(5)°, β = 102.068(6)°, γ = 103.151(3)°, V = 364.74(12) Å3 and Z = 2. The crystal structure of SrFe[BP2O8(OH)2] contains isolated borophosphate oligomers, [BP2O8(OH)2]5–, which are interconnected by FeIIIO4(OH)2 coordination octahedra. The resulting three–dimensional framework is characterised by elliptical channels running along [011]. Strontium takes positions inside the channels.  相似文献   

13.
Charge-transfer salts [Co(C5H5)2][M(dpt)2] (M = Ni and Pt; dpt = cis-1,2-diphenylethene-1,2-dithiolate) were synthesized and crystallographically characterized. [Co(C5H5)2][Ni(dpt)2] crystallizes in the monoclinic space group C2/c with a = 25, 607(3) Å, b = 9.4151(11) Å, c = 14.407(4) Å, β = 101.373(22)°, V = 3405.3(10) Å3 and Z = 4. [Co(C5H5)2][Pt(dpt)2] belongs to the triclinic space group $ {\rm P}\bar 1 $ with a = 9.4666(11) Å, b = 13.9869(12) Å, c = 14.2652(9) Å, α = 99.983(6)°, β = 90.034(7)°, γ = 109.751(7)°, V = 1747.2(3) Å3 and Z = 2. Both structures consist of ··· D+A?D+A?D+A? ··· linear chains with the local C5 axis of the eclipsed [Co(C5H5)2]+ cation parallel to the best MS4 plane of the [M(dpt)2]? anion. Magnetic susceptibility measurements show that χM T values of the complexes [Co(C5H5)2][M(dpt)2] (M = Ni, Pd, and Pt) remain nearly constant in the temperature range 15–300 K, but decrease rapidly with further decreasing of temperature, indicating weak antiferromagnetic interactions at low temperatures.  相似文献   

14.
Two new glutarato bridged coordination polymers {[Mn(phen)]2(C5H6O4)4/2} ( 1 ) and {[Zn(phen)(H2O)](C5H6O4)2/2}· H2O ( 2 ) were structurally characterized on the basis of single crystal X‐ray diffraction data. Crystal data: ( 1 ) P2/c (no. 13), a = 10.340(2)Å, b = 10.525(2)Å, c = 13.891(2)Å, β = 98.31(1)°, U = 1495.9(5)Å3, Z = 2; ( 2 ) P21/n (no. 14), a = 6.738(1)Å, b = 25.636(3)Å, c = 10.374(1)Å, β = 106.13(1)°, U = 1721.4(4)Å3, Z = 4. Complex 1 consists of 1D ribbon‐like {[Mn(phen)]2(C5H6O4)4/2} chains, in which the [Mn(phen)] units were interlinked by glutarato ligands to generate 8‐ and 16‐membered rings. The Mn atoms are octahedrally coordinated by two N atoms of one phen ligand and four O atoms of three glutarato ligands with d(Mn‐N) = 2.270, 2.276Å, d(Mn‐O) = 2.114—2.283Å. Through the interchain π‐π stacking interactions, the 1D chains are assembled into 2D puckered layers, which are further held together by interlayer π‐π stacking interactions into a 3D network. Complex 2 is built up by 1D {[Zn(phen)(H2O)](C5H6O4)2/2} linear chains and hydrogen bonded H2O molecules. The Zn atoms are coordinated by two N atoms of one phen ligand and three O atoms of one H2O molecule and two glutarato ligands to form slightly elongated trigonal bipyramids with the water O atom and one phen N atom at the apical positions (d(Zn‐N) = 2.101, 2.168Å, d(Zn‐O) = 1.991—2.170Å). The 1D linear chains result from [Zn(phen)(H2O)] units bridged by bis‐monodentate glutarato ligands. The resulting 1D chains are assembled by π‐π stacking interactions into 2D layers, between which the hydrogen bonded H2O molecules are situated.  相似文献   

15.
A new coordination polymer, [Co2(μ-H2O)(4,3-pybz)4] n (1), has been hydrothermally synthesized from Co(NO3)2 · 6H2O and an unsymmetrical 4-pyridin-3-yl-benzoic acid (4,3-Hpybz), which is characterized by IR, elemental analysis, thermogravimetric analysis, and single crystal X-ray diffraction. This compound crystallizes in monoclinic, space group C2/c with a = 11.876(3) Å, b = 15.462(3) Å, c = 21.545(4) Å, β = 94.873(5)°, V = 3942.0(15) Å3, Z = 4, Dc = 1.565 g cm?3, F(000) = 1904, GOF = 1.025, μ = 0.910 mm?1, R 1 = 0.0456, wR 2 = 0.0983. Compound 1 shows a 3-D (3,6)-connected coordination framework with (3.4.5)(32.44.55.62.72) topology, in which cobalt is a six-connected node, and the 4,3-Hpybz ligands serve as two-connected spacers and three-connected nodes. In addition, the magnetic and thermal properties of 1 have also been investigated.  相似文献   

16.
Two novel borophosphates, MII(C4H12N2)[B2P3O12(OH)] (MII = Co, Zn), exhibiting open frameworks, have been synthesized by hydrothermal reactions (T = 165 °C). The crystal structures of the isotypic compounds have been determined both at 293 K (orthorhombic, Ima2 (no. 46), Z = 4; MII = Co: a = 12.4635(4) Å, b = 9.4021(4) Å, c = 11.4513(5) Å, V = 1341.90 Å3, R1 = 0.0202, wR2 = 0.0452, 2225 observed reflections with I > 2σ(I); MII = Zn: a = 12.4110(9) Å, b = 9.4550(5) Å, c = 11.4592(4) Å, V = 1344.69 Å3, R1 = 0.0621, wR2 = 0.0926, 1497 observed reflections with I > 2σ(I)). Distorted CoO6‐octahedra and ZnO5‐square‐pyramids, respectively, share common oxygen‐corners with BO4‐, PO4‐ and (HO)PO3‐tetrahedra. The tetrahedral groups are linked via common corners to form infinite loop‐branched borophosphate chains [B2P3O12(OH)4–]. The open framework of MII‐coordination polyhedra and tetrahedral borophosphate chains contains a three‐dimensional system of interconnected structural channels running along [100], [011] and [011], respectively, which are occupied by di‐protonated piperazinium ions.  相似文献   

17.
The monomeric rhenium(I) complex with bidentate telluroether ligand Re(CO)3Br(PhTe(CH2)3TePh) (1) was accessible via reaction of the PhTe(CH2)3TePh with Re(CO)5Br. This chelate complex crystallized in triclinic space group $ {\rm P}\bar 1 $ with a = 9.390(5) Å, b = 10.961(3) Å, c = 11.849(4) Å a = 63.30(3)°, β = 87.49(4)° γ = 69.31(4)°, V = 1009.5(7) Å3 Z = 2, R = 0.033, and Rw = 0.034. Reaction of Re(CO)5Cl with NaTePh yielded the Re(I) specics PhTeRe(CO)5 (2). This complex crystallized in triclinic space group $ {\rm P}\bar 1 $ with a = 7.085(1) Å, b = 9.203(1) Å, c = 11.341(1) Å, α = 107.24(1)°, β = 100.56(1)°, γ = 96.47(1)°, V = 683.2(2) Å3, Z = 2, R = 0.027, Rw = 0.022. Reaction of PhTeRe(CO)5 and (PhSe)2 in THF at 65 °C yielded a product that was confirmed crystallographically to be the known species Re2(μ-SePh)2(CO)8 (3), in which two phenylselenolate ligands bridge the two Re(I). Compound 3 crystallized in monoclinic space group P21/n with a = 7.210(2) Å, b = 18.862(6) Å, c = 9.083(3) Å, β = 107.48(3)° V = 1178.2(7) Å3, Z = 2, R = 0.046, and Rw = 0.051. Methylation of PhTeRe(CO)5 with [Me3O][BF4] afforded Re(I) product [(PhTeMe)Re(CO)5][BF4] (4). This monodentate telluroether species crystallized in monoclinic space group P21/n with a = 8.405(1) Å, b = 13.438(3) Å, c = 15.560(2) Å, β = 92.59(1)° V = 1755.5(5) Å3, Z = 4, R = 0.035, and Rw = 0.035.  相似文献   

18.
One binuclear complex [Co(bpm*)2(dca)]2(ClO4)2 ( 1 ) and two 1D chain CoII complexes, {[Co(bpm)2(dca)](ClO4)}n ( 2 ) and [Co(dmf)2(dca)2]n ( 3 ), (bpm*: bis[(3, 5‐dimethyl)pyrazolyl]methane; bpm: bis(pyrazolyl)methane; dca: dicyanamide; dmf: N, N‐dimethyl formamide) have been prepared and structurally characterized. The cobalt atoms are hexa‐coordinated forming a slightly distorted octahedral coordination. Compound 1 crystallizes in the monoclinic system, space group P21/c, a = 9.849(3)Å, b = 21.944(7)Å, c = 13.814(5)Å, β = 94.824(6), Z = 4, R1 = 0.0672, wR2 = 0.1395. 1 is a binuclear complex linked by two dca ligands, and each CoII ion is coordinated by two terminal bpm* ligands. Compound 2 crystallizes in the orthorhombic system, space group Cmcm, a = 10.377(4)Å, b = 13.594(5)Å, c = 15.999(6)Å, Z = 4, R1 = 0.0609, wR2 = 0.1328. The structure of 2 can be described as a one‐dimensional zigzag chain of CoII ions bridged by one dca ligand. Each CoII ion in the chain is coordinated by two bpm ligands. Compound 3 crystallizes in the monoclinic system, space group C2, a = 13.559(15)Å, b = 7.393(8)Å, c = 8.110(9)Å, β = 112.228(15), Z = 2, R1 = 0.0260, wR2 = 0.0760. 3 has a one‐dimensional linear chain of CoII ions bridged by two dca ligands, in which each CoII ion is coordinated with two dmf molecules.  相似文献   

19.
The structure, spectroscopic, and electrochemical properties of [Co{(Me-sal)2dien}(N3)] and [Co{(Me-sal)2dpt}(N3)], where (Me-sal)2dien = 2,2′-[1,1′-(3-azapentane-1,5-diyldinitrilo)diethylidyne] diphenolate and (Me-sal)2dpt = 2,2′-[1,1′-(4-azapentane-1,7-diyldinitrilo)diethylidyne] diphenolate, have been investigated. These complexes have been characterized by elemental analyses, IR, UV–Vis, and 1H-NMR spectroscopy. The crystal structures of these complexes have been determined by X-ray diffraction. Complex 1 crystallizes in the triclinic space group P 1, with a = 7.8443(4) Å, b = 11.0660(5) Å, c = 11.6216(6) Å, α = 73.360(1)°, β = 76.965(1)°, γ = 84.436(1)° and Z = 2. Complex 2 crystallizes in the monoclinic space group P21/n, with a = 12.1985(13) Å, b = 10.9332(12) Å, c = 15.2808(16) Å, β = 76.965(1)° and Z = 4. The coordination geometry around cobalt(III) in both complexes is a distorted octahedron. The electrochemical reduction of these complexes at a glassy carbon electrode in acetonitrile indicates that the first reduction corresponding to CoIII–CoII is electrochemically irreversible, accompanied by dissociation of the axial Co–N(N3) bond. The second reduction step of Co(II/I) leads to decomposition of the complex. These observations are rationalized based on the structure-function relations.  相似文献   

20.
Crystals of anionic Na[CuCl2(HOCH2C≡CCH2OH)]·2H2O π‐complex have been synthesized by interaction of 2‐butyne‐1,4‐diol with CuCl in a concentrated aqueous NaCl solution and characterized by X‐ray diffraction at 100 K. The crystals are triclinic: space group , a = 7.142(3), b = 7.703(3), c = 10.425(4) Å, α = 105.60(3), β = 99.49(3), γ = 110.43(3)°, V = 495.9(4) Å3, Z = 2, R = 0.0203 for 3496 reflections. The structure is built of discrete [CuCl2(HOCH2C≡CCH2OH)]? anionic stacks and polymeric cations among the stacks. The CuI atom adopts trigonal planar coordination of two Cl? anions and the C≡C bond of 2‐butyne‐1,4‐diol, Cu–(C≡C) distance is equal to 1.903(3) Å. Na+ cations environment is octahedral and consists of O and Cl atoms. The crystal packing is governed by strong hydrogen bonds of O–H···Cl and O–H···O types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号