首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two macrobicyclic ligands derived from an 18‐membered tetralactam ring and 2,2′‐bipyridine or 2,6‐bis(pyrazol‐1‐yl)pyridine moieties, 1 and 2 , respectively, form stable complexes with GdIII, EuIII, and TbIII ions in aqueous solution. The ligand‐based luminescence is retained in the GdIII cryptates, whereas this radiative deactivation is quenched in the EuIII and TbIII cryptates by ligand‐to‐metal energy transfer, resulting in the usual metal‐centered emission spectra. Singlet‐ and triplet‐state energies, emission‐decay lifetimes, and luminescence yields were measured. [Tb⊂ 1 ]3+ cryptate shows a long luminescence lifetime (τ=1.12 ms) and a very high metal luminescence quantum yield (Φ=0.25) in comparison with those reported in the literature for Tb3+ complexes sensitized by a bipyridine chromophore. By comparison to [Ln⊂ 1 ]3+, [Ln⊂ 2 ]3+ presents markedly lower luminescence properties, due to worse interaction between the 2,6‐bis(pyrazol‐1‐yl)pyridine unit and the metal ion. Moreover, the luminescent metal and the triplet ligand energy levels of [Eu⊂ 2 ]3+ do not match. The effects of H2O molecules coordinated to the metal centre and of thermally activated decay processes on nonradiative deactivation to the ground‐state are also reported.  相似文献   

2.
The multicolor Gd2O2S:xTb3+, yEu3+ hollow spheres were successfully synthesized via a template-free solvothermal route without the use of surfactant from commercially available Ln (NO3)3·6H2O (Ln = Gd, Tb and Eu), absolute ethanol, ethanediamine and sublimed sulfur as the starting materials. The phase, structure, particle morphology and photoluminescence (PL) properties of the as-obtained products were investigated by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM) and photoluminescence spectra. The influence of synthetic time on phase, structure and morphology was systematically investigated and discussed. The possible formation mechanism depending on synthetic time t for the Gd2O2S phase has been presented. These results demonstrate that the Gd2O2S hollow spheres could be obtained under optimal condition, namely solvothermal temperature T = 220 °C and synthetic time t = 16 h. The as-obtained Gd2O2S sample possesses hollow sphere structure, which has a typical size of about 2.5 μm in diameter and about 0.5 μm in shell thickness. PL spectroscopy reveals that the strongest emission peak for the Gd2O2S:xTb3+ and the Gd2O2S:yEu3+ samples is located at 545 nm and 628 nm, corresponding to 5D47F5 transitions of Tb3+ ions and 5D07F2 transitions of Eu3+ ions, respectively. The quenching concentration of Tb3+ ions and Eu3+ ions is 7%. In the case of Tb3+ and Eu3+ co-doped samples, when the concentration of Tb3+ or Eu3+ ions is 7%, the optimum concentration of Eu3+ or Tb3+ ions is determined to be 1%. Under 254 nm ultraviolet (UV) light excitation, the Gd2O2S:7%Tb3+, the Gd2O2S:7%Tb3+,1%Eu3+ and the Gd2O2S:7%Eu3+ samples give green, yellow and red light emissions, respectively. And the corresponding CIE coordinates vary from (0.3513, 0.5615), (0.4120, 0.4588) to (0.5868, 0.3023), which is also well consistent with their luminous photographs.  相似文献   

3.
Five novel lanthanide (Eu3+ (1), Tb3+ (2), Sm3+ (3), Dy3+ (4) and Gd3+ (5)) complexes with 5-Bromonicotinic acid (5-Brnic) were synthesized and two of them (Tb3+, Sm3+) were characterized by X-ray diffraction. The results reveal that {[Tb(5-Brnic)3(H2O)3]·H2O}n (2) and [Sm(5-Brnic)3(H2O)2·H2O]2 (3) exhibit different coordination geometries and crystal structures. Complex 2 has a one-dimensional chain-like polymeric structure through the bridged 5-Brnic anions which links up two neighboring terbium ions, while Complex 3 forms a dimeric molecular structure. The lowest triplet state energy of 5-Brnic was determined to be 24 330 cm−1 corresponded to the 0-0 transition in the phosphorescence spectrum of its gadolinium complex at 411 nm. The strong luminescent emission intensities of these complexes indicated that the triplet state energy of 5-Brnic is suitable for the sensitization of luminescence of Eu3+, Tb3+, Sm3+ and Dy3+, especially for that of Tb3+ and Dy3+.  相似文献   

4.
Summary. In this paper, according to the molecular fragment principle, a series of twelve quaternary luminescent lanthanide complex molecular systems were assembled. Both elemental analysis and infrared spectroscopy allowed to determine the complexes formula: Ln(Nic)3(L)·H2O, where Ln=Sm, Eu, Tb, Dy; HNic=pyridine-3-carboxylic acid; L=N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMA), pyrrolidone (pyro). The photophysical properties of these functional molecular systems were studied by recording both ultraviolet-visible absorption, phosphorescence, fluorescence excitation, and emission spectra. It was found that the conjugated pyridine-3-carboxylic acid acts as the main energy donor and luminescence sensitizer due to the suitable energy match and effective energy transfer to the luminescent Ln 3+ ions. Amide molecules (DMF, DMA, pyro) were only used as assistant structural ligands to enhance the luminescence. Especially the europium complexes show the strongest luminescence due to the optimum energy transfer between the HNic triplet state energy level and Eu3+.  相似文献   

5.
Three new isostructural 3D lanthanide metal–organic frameworks (Ln‐MOFs), {H[LnL(H2O)]?2 H2O}n ( 1‐Ln ) (Ln=Eu3+, Gd3+ and Tb3+), based on infinite lanthanide‐carboxylate chains were constructed by employing an ether‐separated 5,5′‐oxydiisophthalic acid (H4L) ligand under solvothermal reaction. 1‐Eu and 1‐Tb exhibit strong red and green emission, respectively, through the antenna effect, as demonstrated through a combination of calculation and experimental results. Moreover, a series of dichromatic doped 1‐EuxTby MOFs were fabricated by introducing different concentrations of Eu3+ and Tb3+ ions, and they display an unusual variation of luminescent colors from green, yellow, orange to red. 1‐Eu with channels decorated by ether O atoms and the open metal sites displays good performance for CO2 capture and conversion between CO2 and epoxides into cyclic carbonates.  相似文献   

6.
New LnxBi2–xSe3 (Ln: Sm3+, Eu3+, Gd3+, Tb3+) based nanomaterials were synthesized by a co‐reduction method. Powder XRD patterns indicate that the LnxBi2–xSe3 crystals (Ln = Sm3+, Eu3+, x = 0.00–0.44 and Ln = Gd3+, Tb3+, x = 0.00–0.50) are isostructural with Bi2Se3. The cell parameter c decreases for Ln = Eu3+, Gd3+, Tb3+ upon increasing the dopant content (x), while a slightly increases. Changes in lattice parameters could be related to the radii of cations. SEM images show that doping of the lanthanide ions in the lattice of Bi2Se3 generally results in nanoflowers. For the terbium compound two kinds of morphologies (nanoflowers and nanobelts) were observed. UV/Vis absorption and emission spectroscopy reveals mainly electronic transitions of the Ln3+ ions. Emission spectra show intense transitions from the excited to the ground state of Ln3+ and energy transfer from the Bi2Se3 lattice. Emission spectra of europium‐doped materials, in addition to the characteristic red emission peaks of Eu3+, show an intense blue emission band centered at 432 nm, originating from the 4f65d1 to 4f7 configuration in Eu2+. EPR measurements confirm the existence of Eu2+ in the materials. Interestingly, for all samples starting at low Ln3+ concentration, the emission intensity rises to a maximum at a Ln3+ concentration of x = 0.2 and falls again steadily to a minimum at x = 0.45.  相似文献   

7.
Physicochemical properties of new isostructural homo- and heteronuclear coordination polymers of terbium and europium with 1,4-bis-(4-methoxycarbonyl-3-hydroxyphenoxycarbonyl)butane (H2L) differing in the composition have been studied. The Tb2L3·H2O compound has exhibited efficient sensibilized green luminescence, whereas the corresponding europium-containing polymer EuL3·H2O has shown practically no luminescence due to mismatch of energies of the ligand triplet level and the Eu3+ ion emitting level. Heteronuclear terbium-europium polymers (Tb1.5Eu0.5L3·H2O, TbEuL3·H2O, and Tb0.5Eu1.5L3·H2O) show luminescence via the intramolecular transfer of the exiting energy from Tb3+ emitting level to Eu3+.  相似文献   

8.
以2,6-二甲基吡啶-3,5-二羧酸(H2L1)为主配体,1,10-菲咯啉(L2)为辅配体,分别与五水合硝酸镝、六水合硝酸铽及六水合硝酸铕通过水热法合成[Dy2(L13(L22]n1)、{[Tb2(L13(L22]·5H2O}n2)和{[Eu2(L13(L22]·5H2O}n3)三种配合物。通过单晶X射线衍射、红外光谱、荧光光谱和热重分析对其结构进行了表征与性质研究。结果表明,配合物1~3均以稀土离子为金属节点连接配体L12-和L2,形成无限延伸的一维链状结构。  相似文献   

9.
Ten new complexes, [Cu2(L1)(NO3)2]·2H2O (1), [Cu4(L1)2]·4ClO4·H2O (2), [Cu2(L1)(H2O)2]·(adipate) (3), [Cu6(L1)2(m-bdc)4]·2DMF·5H2O (4), [Cu2(L1)(Hbtc)]·5H2O (5), [Cu2(L1)(H2O)2]·(ntc)·3H2O (6), [Co2(L2)]·[Co(MeOH)4(H2O)2] (7), [Co3(L2)(EtOH)(H2O)] (8), [Ni6(L2)2(H2O)4]·H2O (9) and [Zn4(L2)(OAc)2]·0.5H2O (10), have been synthesized. 1 displays a [Cu2(L1)(NO3)2] monomolecular structure. 2 shows a supramolecular chain including [Cu2L1]2+. In 3, two Cu(II) ions are connected by L1 to form a [Cu2(L1)(H2O)2]2+ cation. In 4, the m-bdc anions bridge Cu(II) ions and L1 anions to form a layer. Both 5 and 6 display 3-D supramolecular structures. 7 consists of both [Co2L2]2? and [Co(MeOH)4(H2O)2]2+ units. 8 and 9 show infinite chain structures. In 10, Zn(II) dimers are linked by L2 to generate a 3-D framework. The magnetic properties for 4 and 8 and the luminescent property for 10 have been studied.  相似文献   

10.
Homodinuclear lanthanide complexes (Ln=La, Eu, Gd, Tb, Yb and Lu) derived from a bis‐macrocyclic ligand featuring two 2,2′,2′′‐(1,4,7,10‐tetraazacyclododecane‐1,4,7‐triyl)triacetic acid chelating sites linked by a 2,6‐bis(pyrazol‐1‐yl)pyridine spacer (H2L3) were prepared and characterized. Luminescence lifetime measurements recorded on solutions of the EuIII and TbIII complexes indicate the presence of one inner‐sphere water molecule coordinated to each metal ion in these complexes. The overall luminescence quantum yields were determined (?=0.01 for [Eu2(L3)] and 0.50 for [Tb2(L3)] in 0.01 M TRIS/HCl, pH 7.4; TRIS=tris(hydroxymethyl)aminomethane), pointing to an effective sensitization of the metal ion by the bispyrazolylpyridyl unit of the ligand, especially with Tb. The nuclear magnetic relaxation dispersion (NMRD) profiles recorded for [Gd2(L3)] are characteristic of slowly tumbling systems, showing a low‐field plateau and a broad maximum around 30 MHz. This suggests the occurrence of aggregation of the complexes giving rise to slowly rotating species. A similar behavior is observed for the analogous GdIII complex containing a 4,4′‐dimethyl‐2,2′‐bipyridyl spacer ([Gd2(L1)]). The relaxivity of [Gd2(L3)] recorded at 0.5 T and 298 K (pH 6.9) amounts to 13.7 mM ?1 s?1. The formation of aggregates has been confirmed by dynamic light scattering (DLS) experiments, which provided mean particle sizes of 114 and 38 nm for [Gd2(L1)] and [Gd2(L3)], respectively. TEM images of [Gd2(L3)] indicate the formation of nearly spherical nanosized aggregates with a mean diameter of about 41 nm, together with some nonspherical particles with larger size.  相似文献   

11.
本文通过水热法合成了含有3种不同稀土离子的层状稀土氢氧化物(Gd0.5Tb0.5-xEux)2(OH)5NO3.nH2O,并选择有机物水杨酸(HSA)作为敏化剂,通过在水热条件下的离子交换反应,成功将其以有机阴离子形式与层状稀土氢氧化物插层组装获得有机-无机杂化荧光材料(SA--LRHs∶xEu)。荧光性质测定表明,SA-通过有效的能量转移增强了Tb3+的特征绿色荧光发射,随着Eu3+含量的增加,Eu3+的特征红色荧光发射随之增强,而Tb3+的特征绿色荧光发射随之减弱。在此基础上,将发光颜色可调的有机-无机荧光材料与聚甲基丙烯酸甲酯(PMMA)复合组装出透明的荧光薄膜。  相似文献   

12.
A series of Eu3+ ions co-doped (Gd0.9Y0.1)3Al5O12:Bi3+, Tb3+ (GYAG) phosphors have been synthesized by means of solvothermal reaction method. The XRD pattern of GYAG phosphor sintered at 1500 °C confirms their garnet phase. The luminescence properties of these phosphors have been explored by analyzing their excitation and emission spectra along with their decay curves. The excitation spectra of the GYAG:Bi3+, Tb3+, Eu3+ phosphors consists of broad bands in the shorter wavelength region due to 4f8 → 4f75d1 transition of Tb3+ ions overlapped with 6s2 → 6s16p1 (1S0 → 3P1) transition of Bi3+ ions and the charge transfer band of Eu3+–O2?. The present phosphors exhibit green and red colors due to 5D4 → 7F5 transition of Tb3+ ions and 5D0 → 7F1 transition of Eu3+ ions, respectively. The emission was shifted from green to red color by co-doping with Eu3+ ions, which indicate that the energy transfer probability from Tb3+ to Eu3+ ions are dependent strongly on the concentration of Eu3+ ions.  相似文献   

13.
New bi- and trihomonuclear Mn(II), Co(II), Ni(II), and Zn(II) complexes with sulfa-guanidine Schiff bases have been synthesized for potential chemotherapeutic use. The complexes are characterized using elemental and thermal (TGA) analyses, mass spectra (MS), molar conductance, IR, 1H-NMR, UV-Vis, and electron spin resonance (ESR) spectra as well as magnetic moment measurements. The low molar conductance values denote non-electrolytes. The thermal behavior of these chelates shows that the hydrated complexes lose water of hydration in the first step followed by loss of coordinated water followed immediately by decomposition of the anions and ligands in subsequent steps. IR and 1H-NMR data reveal that ligands are coordinated to the metal ions by two or three bidentate centers via the enol form of the carbonyl C=O group, enolic sulfonamide S(O)OH, and the nitrogen of azomethine. The UV-Vis and ESR spectra as well as magnetic moment data reveal that formation of octahedral [Mn2L1(AcO)2(H2O)6] (1), [Co2(L1)2(H2O)8] (2), [Ni2L1(AcO)2(H2O)6] (3), [Mn3L2(AcO)3(H2O)9] (5), [Co3L2(AcO)3(H2O)9] · 4H2O (6), [Ni3L2(AcO)3(H2O)9] · 7H2O (7), [Mn3L3(AcO)3(H2O)6] (9), [Co2(HL3)2(H2O)8] · 4H2O (10), [Ni3L3(AcO)3(H2O)9] (11), [Mn3L4(AcO)3(H2O)9] · H2O (13), [Co2(HL4)2(H2O)8] · 5H2O (14), and [Ni3L4(AcO)3(H2O)9] (15) while [Zn2L1(AcO)2(H2O)2] (4), [Zn3L2(AcO)3(H2O)3] · 2H2O (8), [Zn3L3(AcO)3(H2O)3] · 3H2O (12), and [Zn3L4(AcO)3(H2O)3] · 2H2O (16) are tetrahedral. The electron spray ionization (ESI) MS of the complexes showed isotope ion peaks of [M]+ and fragments supporting the formulation.  相似文献   

14.
A series of metal complexes of Schiff bases derived from condensation of sulfa-guanidine with 1-benzoylacetone (H2L1), 2-hydroxybenzophenol (H2L2), dibenzoylmethane (H2L3), 5-methylisatine (H2L4), and 1-methylisatine (H2L5) have been synthesized. The complexes are characterized by elemental analysis, molar conductance, magnetic moment measurements, IR, UV–Vis, 1H NMR, and ESR spectra, as well as thermogravimetric analysis. The low molar conductance values indicate the complexes are nonelectrolytes. IR and 1H NMR spectra show that H2L1–H2L5 are coordinated to metal ions by two bidentate centers. Mn(II), Co(II), Ni(II), and Cu(II) complexes display paramagnetic behavior, whereas the Zn(II)-complex was diamagnetic. All studies confirm the formation of an octahedral geometry for [Cu2L1(AcO)2(H2O)6] · 3H2O (1), [Mn2L4(AcO)2(H2O)6] · 2H2O (6), [Ni2L4(AcO)2(H2O)6] · 2H2O (8), a tetrahedral geometry for [Cu2L2(AcO)2(H2O)2] (2), [Cu2(L4)2] (4), [Co2(L4)2] · 2H2O (7) and [ZnHL4(AcO)(H2O)] · 2H2O (9) and a trigonal bipyramid geometry for [Cu2L3(AcO)2(H2O)4] (3) and [Cu2HL5(AcO)3(H2O)3] · H2O (5). H2L4 was most effective on Gram negative, Gram positive bacteria, and fungi (diameters inhibition zone ranged between 10.5–27.5 mm) after 24 and 48 h, respectively. Complex 8 showed moderate antimicrobial activity. Its minimum inhibitory concentration (MIC) against Escherichia coli, Bacillus subtilis, Candida albicans and Aspargllus flavas was 20 mg L–1. The compound proved to be of moderate toxicity and its LD50 was 20 mg L–1.  相似文献   

15.
The luminescence of Ce3+, Sm3+, Eu3+, Gd3+, Tb3+, and Dy3+ in NaLn(SO4)2H2O (Ln = lanthanide) is reported. Only Ce3+, Gd3+, and Tb3+ show efficient emission. This is explained in terms of an energy-gap law. Energy transfer is studied in several codoped compositions. The mutual transfer between Gd3+ ions is the only one encountered with high probability. The several transfers are discussed and where possible their rates are calculated.  相似文献   

16.
Sandwich coordination complexes, [LnIII(H3L)2]X3?solvents, of Tb(III), Eu(III), Dy(III), Ho(III) and Er(III) were prepared with two new zwitterionic ester-substituted tripodal amine ligands, tris((2-hydroxy-5-n-butyl benzoate)aminoethyl)-amine (H3L1) and tris((2-hydroxy-5-methyl benzoate)aminoethyl)-amine (H3L2). These ligands were synthesised by condensation of the appropriately substituted salicylaldehyde with tris(2-aminoethyl)amine (tren) followed by in situ reduction of the tris-imine to tris-amine. Subsequent 2:1 reaction with lanthanide(III) ions yields [LnIII(H3L)2]X3?solvents (L = L1, L2; X = Cl?, NO3?; solvents = MeOH or H2O). All complexes were characterised by microanalysis, infrared spectroscopy, high resolution mass spectrometry and solid-state photoluminescence measurements. The crystal structures of [TbIII(H3L1)2]Cl3·6MeOH, [Dy(H3L1)2]Cl3·6MeOH, [EuIII(H3L1)2]Cl3·6MeOH and [TbIII(H3L1)2](NO3)3 reveal high-crystallographic ?3 symmetry at the O6-coordinated octahedral lanthanide(III) ions and that the tripodal ligands are bound in zwitterionic form: the protons from the phenolic oxygens have migrated to the amino nitrogens. Photoluminescence measurements indicate various degrees of energy transfer of the ligand chromophore to the lanthanide ions, as both ligand and lanthanide emission features are observed. Despite the high-crystallographic symmetry and the likely small transverse magnetic anisotropy of the complexes, no evidence of slow relaxation of the magnetisation, characteristic of a single-molecule magnet, was observed for [TbIII(H3L1)2]Cl3·MeOH·3H2O, [DyIII(H3L1)2]Cl3·6H2O, [HoIII(H3L1)2](NO3)3·2H2O, [ErIII(H3L1)2]·H2O and [TbIII(H3L1)2](NO3)3 down to 2.0 K.  相似文献   

17.
本文通过水热法合成了含有3种不同稀土离子的层状稀土氢氧化物 (Gd0.5Tb0.5-xEux)2(OH)5NO3·nH2O, 并选择有机物水杨酸(HSA)作为敏化剂, 通过在水热条件下的离子交换反应, 成功将其以有机阴离子形式与层状稀土氢氧化物插层组装获得有机-无机杂化荧光材料(SA--LRHs:xEu)。荧光性质测定表明, SA-通过有效的能量转移增强了Tb3+的特征绿色荧光发射, 随着Eu3+含量的增加, Eu3+的特征红色荧光发射随之增强, 而Tb3+的特征绿色荧光发射随之减弱。在此基础上, 将发光颜色可调的有机-无机荧光材料与聚甲基丙烯酸甲酯(PMMA)复合组装出透明的荧光薄膜。  相似文献   

18.
For the first time, a new langbeinite‐type phosphate, namely potassium terbium tantalum tris(phosphate), K2Tb1.5Ta0.5(PO4)3, has been prepared successfully using a high‐temperature flux method and has been structurally characterized by single‐crystal X‐ray diffraction. The results show that its structure can be described as a three‐dimensional open framework of [Tb1.5Ta0.5(PO4)3] interconnected by K+ ions. The TbIII and TaV cations in the structure are disordered and occupy the same crystallographic sites. The IR spectrum, the UV–Vis spectrum, the morphology and the Eu3+‐activated photoluminescence spectroscopic properties were studied. A series of Eu3+‐doped phosphors, i.e. K2Tb1.5–xTa0.5(PO4)3:xEu3+ (x = 0.01, 0.03, 0.05, 0.07, 0.10), were prepared via a solid‐state reaction and the photoluminescence properties were studied. The results show that under near‐UV excitation, the luminescence colour can be tuned from green through yellow to red by simply adjusting the Eu3+ concentration from 0 to 0.1, because of the efficient Tb3+→Eu3+ energy‐transfer mechanism.  相似文献   

19.
EuIII, TbIII, GdIII and YbIII complexes of the nonadentate bispidine derivative L2 (bispidine=3,7-diazabicyclo[3.3.1]nonane) were successfully synthesized and their emission properties studied. The X-ray crystallography reveals full encapsulation by the nonadentate ligand L2 that enforces to all LnIII cations a common highly symmetrical capped square antiprismatic (CSAPR) coordination geometry (pseudo C4v symmetry). The well-resolved identical emission spectra in solid state and in solution confirm equal structures in both media. As therefore expected, this results in long-lived excited states and high emission quantum yields ([EuIIIL2]+, H2O, 298 K, τ=1.51 ms, ϕ=0.35; [TbIIIL2]+, H2O, 298 K, τ=1.95 ms, ϕ=0.68). Together with the very high kinetic and thermodynamic stabilities, these complexes are a possible basis for interesting biological probes.  相似文献   

20.
The yttrium organic framework (Y0.89Tb0.10Eu0.01)6(BDC)7(OH)4(H2O)4 (BDC=benzene-1,4-dicarboxylate) is hydrothermally stable up to at least 513 K and thermally stable in air in excess of 673 K. The relative intensities of luminescence of Tb3+ and Eu3+ are governed by Tb3+-to-Eu3+ phonon-assisted energy transfer and Tb3+-to-ligand back transfer and are responsible for the differing temperature-dependent luminescence of the two ions. This provides a ratiometric luminescent thermometer in the 288–573 K temperature range, not previously seen for MOF materials, with a high sensitivity, 1.69±0.04 % K−1 at 523 K. In aqueous conditions, loosely bound H2O can be replaced by D2O in the same material, which modifies decay lifetimes to yield a quantitative luminescent D2O sensor with a useful sensitivity for practical application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号