首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chloro (Cl)‐ and bromo (Br)‐functionalized macroinitiators were successfully prepared from the softwood hemicellulose O‐acetylated galactoglucomannan (AcGGM) and then explored and evaluated with respect to their ability and efficiency of initiating single electron transfer‐living radical polymerization (SET‐LRP). Both halogenated species effectively initiate SET‐LRP of an acrylate and a methacrylate monomer, respectively, yielding brushlike AcGGM graft copolymers, where the molecular weights are accurately controlled via the monomer:macroinitiator ratio and polymerization time over a broad range: from oligomeric to ultrahigh. The nature of the halogen does not influence the kinetics of polymerization strongly, however, for acrylate graft polymerization, AcGGM‐Cl gives a somewhat higher rate constant of propagation, while methacrylate grafting proceeds slightly faster when the initiating species is AcGGM‐Br. For both monomers, the macroinitiator efficiency is superior in the case of AcGGM‐Br. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

2.
Alcohols are known to promote the disproportionation of Cu(I)X species into nascent Cu(0) and Cu(II)X. Therefore, alcohols are expected to be excellent solvents that facilitate the single‐electron transfer mediated living radical polymerization (SET‐LRP) mediated by nascent Cu(0) species. This publication demonstrates the ultrafast SET‐LRP of methyl acrylate initiated with bis(2‐bromopropionyloxy)ethane and catalyzed by Cu(0)/Me6‐TREN in methanol, ethanol, 1‐propanol, and tert‐butanol and in their mixture with water at 25 °C. The structural analysis of the resulting polymers by a combination of 1H NMR and MALDI‐TOF MS demonstrates the synthesis of perfectly bifunctional α,ω‐dibromo poly(methyl acrylate)s by SET‐LRP in alcohols. Moreover, this work provides an expansion of the list of solvents available for SET‐LRP. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2745–2754, 2008  相似文献   

3.
The single‐electron transfer living radical polymerization (SET‐LRP) of methyl acrylate initiated with bromoform (CHBr3) and iodoform (CHI3) and catalyzed by Cu(0)/Me6‐TREN in DMSO at 25 °C provides a reliable method to prepare poly (methyl acrylate) (PMA) with active chain ends and controlled structure that can undergo subsequent functionalization to provide strategies for the synthesis of different block copolymers and other complex architectures. A detailed kinetic and structural analysis was used to assess the scope and the limitations of CHBr3 and CHI3 as initiators under SET‐LRP conditions. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 278–288, 2008  相似文献   

4.
A series of well‐defined double hydrophilic graft copolymers containing poly[poly(ethylene glycol) methyl ether acrylate] (PPEGMEA) backbone and poly[poly(ethylene glycol) ethyl ether methacrylate] (PPEGEEMA) side chains were synthesized by the combination of single electron transfer‐living radical polymerization (SET‐LRP) and atom transfer radical polymerization (ATRP). The backbone was first prepared by SET‐LRP of poly(ethylene glycol) methyl ether acrylate macromonomer using CuBr/tris(2‐(dimethylamino)ethyl)amine as catalytic system. The obtained comb copolymer was treated with lithium diisopropylamide and 2‐bromoisobutyryl bromide to give PPEGMEA‐Br macroinitiator. Finally, PPEGMEA‐g‐PPEGEEMA graft copolymers were synthesized by ATRP of poly(ethylene glycol) ethyl ether methacrylate macromonomer using PPEGMEA‐Br macroinitiator via the grafting‐from route. The molecular weights of both the backbone and the side chains were controllable and the molecular weight distributions kept narrow (Mw/Mn ≤ 1.20). This kind of double hydrophilic copolymer was found to be stimuli‐responsive to both temperature and ion (0.3 M Cl? and SO). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 647–655, 2010  相似文献   

5.
SET‐LRP is mediated by a combination of solvent and ligand that promotes disproportionation of Cu(I)X into Cu(0) and Cu(II)X2. Therefore, the diversity of solvents suitable for SET‐LRP is limited. SET‐LRP of MA in a library of solvents with different equilibrium constants for disproportionation of Cu(I)X such as DMSO, DMF, DMAC, EC, PC, EtOH, MeOH, methoxyethanol, NMP, acetone and in their binary mixtures with H2O was examined. H2O exhibits the highest equilibrium constant for disproportionation of Cu(I)X. The apparent rate constant of the polymerization exhibits a linear increase with the addition of H2O. This is consistent with higher equilibrium constants for disproportionation generated by addition of H2O to organic solvents. Furthermore, with the exception of alcohols and carbonates, the rate constant of polymerization in binary mixtures could be correlated with the Dimroth‐Reichardt solvent polarity parameter. This is consistent with the single‐electron transfer mechanism proposed for SET‐LRP that involves a polar transition state. These experiments demonstrate that the use of binary mixtures of solvents with H2O provides a new, simple and efficient method for the elaboration of a large diversity of reaction media that are suitable for SET‐LRP even when one of the two solvents does not mediate disproportionation of Cu(I)X. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5577–5590, 2009  相似文献   

6.
Isobornyl methacrylate (IBMA), a bulky hydrophobic methacrylate, undergoes very fast polymerization, in bulk, with Cu(I)Br/N,N,N′,N″,N″‐pentamethyldiethylenetriamine (PMDETA)/ethyl‐2‐bromoisobutyrate system, at ambient temperature. IBMA also undergoes a spontaneous initiator‐free polymerization, at ambient temperature, with Cu(I)Br/PMDETA catalytic system in dimethyl sulfoxide–water mixtures. The rate of the polymerization is seen to increase with the water content up to 80 mol % of water. A possible intervention of air in initiation is proposed. The active Cu(0) formed by the disproportionation of Cu(I) species in aqueous medium probably plays a vital role for a possible air‐initiation of IBMA via single electron transfer‐living radical polymerization (SET‐LRP) mechanism. A high tolerance level to water under SET‐LRP conditions is demonstrated. The poly(IBMA) samples obtained exhibit low molecular weight distributions (1.1–1.3). Similar behavior was not observed with other common methacrylates such as methyl methacrylate, t‐butyl methacrylate, cyclohexyl methacrylate, and benzyl methacrylate. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

7.
Controlled and very rapid ambient temperature polymerization of tert‐butyl acrylate (tBA) via atom transfer radical polymerization (ATRP) and single electron transfer living radical polymerization (SET‐LRP) conditions is reported. Two initiators, one that would generate a secondary radical and another that would generate a primary radical, upon activation, are used. A very active catalyst CuBr/Me6TREN was found to initiate rapid polymerization whether it was the primary or the secondary initiator. The polymerization was well controlled and very rapid. The initiator that produces secondary initiating site is found to result in more rapid polymerization than the one that produces primary initiating site. To explore the possibility of rapid ambient temperature polymerization through the SET‐LRP mechanism, the polymerization was also carried out in the presence of DMSO. It was found that the polymerization was much faster compared to the bulk ATRP, without loss of control. Styrene was block copolymerized from PtBA macroinitiators and vice versa. In both the cases, block copolymers with controlled molecular weights were obtained. The tBA block of the polymer was selectively hydrolyzed to get amphiphilic block copolymers. This amphiphilic block copolymer was found to be useful in preparing stable cadmium sulfide (CdS) nanoparticulate dispersion. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

8.
A mechanistic comparison of the ATRP and SET‐LRP is presented. Subsequently, simulation of kinetic experiments demonstrated that, in the heterolytic outer‐sphere single‐electron transfer process responsible for the SET‐LRP, the activation of the initiator and of the propagating dormant species is faster than of the homolytic inner‐sphere electron‐transfer process responsible for ATRP. In addition, simulation experiments suggested that in both polymerizations the rate of deactivation is similar. In SET‐LRP, the Cu(II)X2/L deactivator is created by the disproportionation of Cu(I)X/L inactive species, while in ATRP its concentration is mediated by the bimolecular termination. The combination of higher rate of activation with the creation of deactivator via disproportionation provides, via SET‐LRP, an ultrafast synthesis of polymers with very narrow molecular weight distribution at room temperature. SET‐LRP is mediated by a catalytic amount of Cu(0), and under suitable conditions, bimolecular termination is virtually absent. Kinetic and simulation experiments have also demonstrated that the amount of water available in commercial solvents and monomers is sufficient to induce the disproportionation of Cu(I)X/L into Cu(0) and Cu(II)X2/L and, subsequently, to change the polymerization mechanism from ATRP to SET‐LRP. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1835–1847, 2007.  相似文献   

9.
Cu(0) was prepared via disproportionation of Cu(I)Br in the presence of Me6‐TREN in various solvents in a glove box. The resulting nanopowders were used as mimics of “nascent” Cu(0) catalyst in the single‐electron transfer living radical polymerization (SET‐LRP) of methyl acrylate (MA), providing faster polymerization than any commercial Cu(0) powder, Cu(0) wire, or Cu(I)Br and achieving 80% conversion in only 5 min reaction time. Despite the high rate, a living polymerization was observed with linear evolution of molecular weight, narrow polydispersity, no induction period, and high retention of chain‐end functionality. In addition to providing an unprecedentedly fast, yet controlled LRP of MA, these studies suggest that the very small “nascent” Cu(0) species formed via disproportionation in SET‐LRP are the most active catalysts. Thus, when bulk Cu(0) powder or wire may be the most abundant catalyst and dictates the overall kinetics, any Cu(0) produced via disproportionation will be rapidly consumed and contributes to the overall catalytic cycle. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 403–409, 2010  相似文献   

10.
Single electron transfer‐living radical polymerization (SET‐LRP) represents a robust and versatile method for the rapid synthesis of macromolecules with defined architecture. The present article describes the polymerization of methyl methacrylate by SET‐LRP in protic solvent mixtures. Herein, the polymerization process was catalyzed by a straightforward Cu(0)wire/Me6‐TREN catalyst while initiation was obtained by toluenesulfonyl chloride. All experiments were conducted at 50 °C and the living polymerization was demonstrated by kinetic evaluation of the SET‐LRP. The process follows first order kinetic until all monomer is consumed which was typically achieved within 4 h. The molecular weight increased linearly with conversion and the molecular weight distributions were very narrow with Mw/Mn ~ 1.1. Detailed investigations of the polymer samples by MALDI‐TOF confirmed that no termination took place and that the chain end functionality is retained throughout the polymerization process. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2236–2242, 2010  相似文献   

11.
A series of well‐defined double hydrophilic graft copolymers containing poly(poly(ethylene glycol) methyl ether acrylate) (PPEGMEA) backbone and poly(2‐vinylpyridine) (P2VP) side chains were synthesized by successive single electron transfer living radical polymerization (SET‐LRP) and atom transfer radical polymerization (ATRP). The backbone was first prepared by SET‐LRP of poly(ethylene glycol) methyl ether acrylate (PEGMEA) macromonomer using CuBr/tris(2‐(dimethylamino)ethyl)amine as catalytic system. The obtained homopolymer then reacted with lithium diisopropylamide and 2‐chloropropionyl chloride at ?78 °C to afford PPEGMEA‐Cl macroinitiator. poly(poly(ethylene glycol) methyl ether acrylate)‐g‐poly(2‐vinylpyridine) double hydrophilic graft copolymers were finally synthesized by. ATRP of 2‐vinylpyridine initiated by PPEGMEA‐Cl macroinitiator at 25 °C using CuCl/hexamethyldiethylenetriamine as catalytic system via the grafting‐ from strategy. The molecular weights of both the backbone and the side chains were controllable and the molecular weight distributions kept relatively narrow (Mw/Mn ≤ 1.40). pH‐Responsive micellization behavior was investigated by 1H NMR, dynamic light scattering, and transmission electron microscopy and this kind of double hydrophilic graft copolymer aggregated to form micelles with P2VP‐core while pH of the aqueous solution was above 5.0. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

12.
A series of ferrocene‐based well‐defined amphiphilic graft copolymers, consisting of hydrophilic poly[poly(ethylene glycol) methyl ether acrylate] (PPEGMEA) backbone and hydrophobic poly(2‐acryloyloxyethyl ferrocenecarboxylate) (PAEFC) side chains were synthesized by successive single‐electron‐transfer living radical polymerization (SET‐LRP) and atom transfer radical polymerization (ATRP). The backbone was prepared by SET‐LRP of PEGMEA macromonomer, and it was then treated with lithium di‐isopropylamide and 2‐bromopropionyl bromide at ?78 °C to give PPEGMEA‐Br macroinitiator. The targeted well‐defined graft copolymers with narrow molecular weight distributions (Mw/Mn ≤ 1.32) were synthesized via ATRP of AEFC initiated by PPEGMEA‐Br macroinitiator, and the molecular weights of the backbone and side chains were both controllable. The electro‐chemical behaviors of graft copolymers were studied by cyclic voltammetry, and it was found that graft copolymers were more difficult to be oxidized, and the reversibility of electrode process became less with raising the content of PAEFC segment. The effects of the preparation method, the length of hydrophobic PAEFC segment, and the initial water content on self‐assembly behavior of PPEGMEA‐g‐PAEFC graft copolymers in aqueous media were investigated by transmission electron microscopy. The morphologies of micelles could transform from cylinders to spheres or rods with changing the preparation condition and the length of side chains. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

13.
Poly(methyl acrylate)s, poly(ethyl acrylate)s, and poly(butyl acrylate)s with α,ω‐di(bromo) chain ends and Mn from 8500 to 35,000 were synthesized by single‐electron‐transfer living radical polymerization (SET‐LRP). The analysis of their chain ends by a combination of 1H and 2D‐NMR, GPC, MALDI‐TOF MS, chain end functionalization, chain extension, and halogen exchange experiments demonstrated the synthesis of perfectly bifunctional polyacrylates by SET‐LRP. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4684–4695, 2007  相似文献   

14.
A well‐defined amphiphilic graft copolymer, consisting of hydrophobic polyallene‐based backbone and hydrophilic poly(N‐isopropylacrylamide) (PNIPAM) side chains, was prepared by the combination of living coordination polymerization, single electron transfer‐living radical polymerization (SET‐LRP), and the grafting‐from strategy. First, the double‐bond‐containing backbone was prepared by [(η3‐allyl)NiOCOCF3]2‐initiated living coordination polymerization of 6‐methyl‐1,2‐heptadiene‐4‐ol (MHDO). Next, the pendant hydroxyls in every repeating unit of poly(6‐methyl‐1,2‐heptadiene‐4‐ol) (PMHDO) homopolymer were treated with 2‐chloropropionyl chloride to give PMHDO‐Cl macroinitiator. Finally, PNIPAM side chains were grown from PMHDO backbone via SET‐LRP of N‐isopropylacrylamide initiated by PMHDO‐Cl macroinitiator in N,N‐dimethylformamide/2‐propanol using copper(I) chloride/tris(2‐(dimethylamino)ethyl)amine as catalytic system to afford PMHDO‐g‐PNIPAM graft copolymers with a narrow molecular weight distribution (Mw/Mn = 1.19). The critical micelle concentration (cmc) in water was determined by fluorescence probe technique and the effects of pH and salinity on the cmc of PMHDO‐g‐PNIPAM were also investigated. The micellar morphology was found to be spheres using transmission electron microscopy. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

15.
Cu(I)Br/Me6‐TREN species are unstable and disproportionate into metallic Cu(0) and Cu(II)Br2/Me6‐TREN in DMSO, whereas in toluene are stable and do not undergo disproportionation, at least at 25 °C. To estimate the role of the disproportionating solvent in single electron‐transfer living radical polymerization (SET‐LRP) a comparative analysis of Cu(0)/Me6‐TREN‐catalyzed polymerization of MA initiated with methyl 2‐bromopropionate at 25 °C was performed in DMSO and toluene. A combination of kinetic experiments and chain end analysis by 500‐MHz 1H NMR spectroscopy was used to demonstrate that disproportionation represents the crucial requirement for a successful SET‐LRP of MA at 25 °C. In DMSO a perfect SET‐LRP occurs and yields close to 100% conversion in 45 min. A first order polymerization in growing species up to 100% conversion and a PMA with perfectly functional chain ends are obtained. However, in toluene within 17 h only about 60% conversion is obtained, the polymerization does not show first order in growing species and therefore is not a living polymerization. Moreover, at 60% conversion the resulting PMA has only 80% active chain ends. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6880–6895, 2008  相似文献   

16.
Single electron transfer‐living radical polymerization (SET‐LRP) of methyl acrylate (MA) in methanol, catalyzed with nonactivated and activated Cu(0) wires, was performed in the presence of nondeoxygenated reagents and was investigated under a simple blanket of nitrogen. The addition of a small amount of hydrazine hydrate mediates the deoxygenation of the reaction mixture by the consumption of oxygen through its use to oxidize Cu(0) to Cu2O, followed by the reduction of Cu2O with hydrazine back to the active Cu(0) catalyst. SET‐LRP of MA in methanol in the presence of air requires a smaller dimension of Cu(0) wire, compared to the nonactivated Cu(0) wire counterpart. Activation of Cu(0) wire allowed the polymerization in air to proceed with no induction period, linear first‐order kinetics, linear correlation between the molecular weight evolution with conversion, and narrow molecular weight distribution. The retention of chain‐end functionality of α,ω‐di(bromo) poly(methyl acrylate) (PMA) prepared by SET‐LRP was demonstrated by a combination of experiments including 1H NMR spectroscopy and matrix‐assisted laser desorption ionization–time of flight mass spectrometry after thioetherification of α,ω‐di(bromo) PMA with thiophenol. In SET‐LRP of MA in the presence of limited air, bimolecular termination is observed only above 85% conversion. However, for bifunctional initiators, the small amount of bimolecular termination observed at high conversion maintains a perfectly bifunctional polymer. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

17.
Single‐electron transfer living radical polymerization (SET‐LRP) has developed as a reliable, robust and straight forward method for the construction well‐defined polymers. To span an even larger variety of functional monomers, we investigated the copolymerization of methyl methacrylate with methacrylic acid by SET‐LRP. Copolymerizations were catalyzed by Cu(0)/Me6‐TREN and performed in MeOH/H2O mixtures at 50 °C. The SET‐LRP copolymerizations of varying methacrylic acid content were evaluated by kinetic experiments. At low (2.5%) and moderate (10%) MAA loadings, the copolymerizations obeyed perfect first order kinetics (kpapp = 0.008 min?1 and kpapp = 0.006 min?1) and exhibited a linear increase in molecular weights with conversion providing narrow molecular weight distributions. The SET‐LRP of MMA/25%‐MAA was found to be significantly slower (kpapp = 0.0035 min?1). However, a reasonable first‐order kinetics in monomer consumption was maintained, and the control of the polymerization process was preserved since the molecular weight increased linearly with conversion and could therefore be adjusted. This work demonstrates that the copolymerization of methacrylic acid by SET‐LRP is feasible and the design of well‐defined macromolecules comprising acidic functionality can be achieved. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

18.
19.
The Cu(0)/Me6‐TREN‐catalyzed single‐electron transfer mediated living radical polymerization (SET‐LRP) of methyl acrylate in the presence of the classic 4‐methoxyphenol free radical inhibitor was investigated. Kinetic experiments, combined with 1H NMR, and MALDI‐TOF MS analysis of the resulting polyacrylates demonstrated that SET‐LRP is a robust synthetic method that does not require the purification of the monomers to remove the radical inhibitor. It is anticipated that these results will contribute to the expansion of technological and fundamental applications of SET‐LRP since it allows the synthesis of polymers with a structural perfection that previously was not accessible by any other method, starting from unpurified monomers, solvents, initiators, and ligands. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3174–3181, 2008  相似文献   

20.
In this work, bimetallic zero‐valent metal (Fe(0) powder and Cu(0) powder) was used to mediate the single electron transfer‐living radical polymerization (SET‐LRP) of methyl methacrylate at 25 °C in dimethyl sulfoxide. Different feed ratios of [Fe(0)]0/[Cu(0)]0 (0/1.5, 0.5/1, 0.75/0.75, 1/0.5, and 1.3/0.2) were explored. With the increase of Fe(0) feed, the polymerization rate was mildly depressed with a prolonged induction period. While, the control over the molecular weights was improved upon the increase of Fe(0). A best control (initiation efficiency = 91%) was achieved at [Fe(0)]0/[Cu(0)]0 = 1/0.5. A further increase of Fe(0) to the feed ratio of [Fe(0)]0:[Cu(0)]0 = 1.3: 0.2 led to a uncontrolled polymerization. Explorations of available solvents and ligands for this polymerization confirmed the SET‐LRP mechanism. It was suggested that Fe(0) might act as a dual role in this process: one was the activation agent for Cu(0), which favored a better control over the molecular weights; The other was an alternative catalyst for the activation of R‐X or Pn‐X to generate radicals, which assured a comparable polymerization rate as that of Cu(0). This work provided an alternative and economical catalyst for SET‐LRP, and would eventually reinforce the SET‐LRP technique. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号