首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polynomial preserving gradient recovery technique under anisotropic meshes is further studied for quadratic elements. The analysis is performed for highly anisotropic meshes where the aspect ratios of element sides are unbounded. When the mesh is adapted to the solution that has significant changes in one direction but very little, if any, in another direction, the recovered gradient can be superconvergent. The results further explain why recovery type error estimator is robust even under nonstandard and highly distorted meshes. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011  相似文献   

2.
Delaunay triangulation and its complementary structure the Voronoi polyhedra form two of the most fundamental constructs of computational geometry. Delaunay triangulation offers an efficient method for generating high-quality triangulations. However, the generation of Delaunay triangulations in 3D with Watson's algorithm, leads to the appearance of silver tetrahedra, in a relatively large percentage. A different method for generating high-quality tetrahedralizations, based on Delaunay triangulation and not presenting the problem of sliver tetrahedra, is presented. The method consists in a tetrahedra division procedure and an efficient method for optimizing tetrahedral meshes, based on the application of a set of topological Delaunay transformations for tetrahedra and a technique for node repositioning. The method is robust and can be applied to arbitrary unstructured tetrahedral meshes, having as a result the generation of high-quality adaptive meshes with varying density, totally eliminating the appearance of sliver elements. In this way it offers a convenient and highly flexible algorithm for implementation in a general purpose 3D adaptive finite element analysis system. Applications to various engineering problems are presented  相似文献   

3.
In this paper, we derive gradient recovery type a posteriori error estimate for the finite element approximation of elliptic equations. We show that a posteriori error estimate provide both upper and lower bounds for the discretization error on the non-uniform meshes. Moreover, it is proved that a posteriori error estimate is also asymptotically exact on the uniform meshes if the solution is smooth enough. The numerical results demonstrating the theoretical results are also presented in this paper.  相似文献   

4.
Delaunay refinement algorithms for triangular mesh generation   总被引:36,自引:0,他引:36  
Delaunay refinement is a technique for generating unstructured meshes of triangles for use in interpolation, the finite element method, and the finite volume method. In theory and practice, meshes produced by Delaunay refinement satisfy guaranteed bounds on angles, edge lengths, the number of triangles, and the grading of triangles from small to large sizes. This article presents an intuitive framework for analyzing Delaunay refinement algorithms that unifies the pioneering mesh generation algorithms of L. Paul Chew and Jim Ruppert, improves the algorithms in several minor ways, and most importantly, helps to solve the difficult problem of meshing nonmanifold domains with small angles.

Although small angles inherent in the input geometry cannot be removed, one would like to triangulate a domain without creating any new small angles. Unfortunately, this problem is not always soluble. A compromise is necessary. A Delaunay refinement algorithm is presented that can create a mesh in which most angles are 30° or greater and no angle is smaller than arcsin[( , where φ60°is the smallest angle separating two segments of the input domain. New angles smaller than 30° appear only near input angles smaller than 60°. In practice, the algorithm's performance is better than these bounds suggest.

Another new result is that Ruppert's analysis technique can be used to reanalyze one of Chew's algorithms. Chew proved that his algorithm produces no angle smaller than 30° (barring small input angles), but without any guarantees on grading or number of triangles. He conjectures that his algorithm offers such guarantees. His conjecture is conditionally confirmed here: if the angle bound is relaxed to less than 26.5°, Chew's algorithm produces meshes (of domains without small input angles) that are nicely graded and size-optimal.  相似文献   


5.
We describe a distributed memory parallel Delaunay refinement algorithm for simple polyhedral domains whose constituent bounding edges and surfaces are separated by angles between 90° to 270° inclusive. With these constraints, our algorithm can generate meshes containing tetrahedra with circumradius to shortest edge ratio less than 2, and can tolerate more than 80% of the communication latency caused by unpredictable and variable remote gather operations.

Our experiments show that the algorithm is efficient in practice, even for certain domains whose boundaries do not conform to the theoretical limits imposed by the algorithm. The algorithm we describe is the first step in the development of much more sophisticated guaranteed-quality parallel mesh generation algorithms.  相似文献   


6.
In this paper, a methodology for modeling surface wildfire propagation through a complex landscape is presented. The methodology utilizes a Delaunay triangulation to represent surface fire spread within the landscape. A procedure to construct the graph and estimate the rate of spread along the edges of a network is discussed. After the Delaunay data structure is constructed, a two pass shortest path algorithm is incorporated to estimate the minimum travel time paths and fire arrival times. Experimental results are also included.  相似文献   

7.
The Delaunay triangulation, in both classic and more generalized sense, is studied in this paper for minimizing the linear interpolation error (measure in L^P-norm) for a given function. The classic Delaunay triangulation can then be characterized as an optimal triangulation that minimizes the interpolation error for the isotropic function ‖x‖^2 among all the triangulations with a given set of vertices. For a more general function, a functiondependent Delaunay triangulation is then defined to be an optimal triangulation that minimizes the interpolation error for this function and its construction can be obtained by a simple lifting and projection procedure. The optimal Delaunay triangulation is the one that minimizes the interpolation error among all triangulations with the same number of vertices, i.e. the distribution of vertices are optimized in order to minimize the interpolation error. Such a function-depend entoptimal Delaunay triangulation is proved to exist for any given convex continuous function.On an optimal Delaunay triangulation associated with f, it is proved that △↓f at the interior vertices can be exactly recovered by the function values on its neighboring vertices.Since the optimal Delaunay triangulation is difficult to obtain in practice, the concept of nearly optimal triangulation is introduced and two sufficient conditions are presented for a triangulation to be nearly optimal.  相似文献   

8.
The starting point of the analysis in this paper is the following situation: "In a bounded domain in 2, let a finite set of points be given. A triangulation of that domain has to be found, whose vertices are the given points and which is `suitable' for the linear conforming Finite Element Method (FEM)." The result of this paper is that for the discrete Poisson equation and under some weak additional assumptions, only the use of Delaunay triangulations preserves the maximum principle.  相似文献   

9.
In this paper an anisotropic interpolation theorem is presentedthat can be easily used to check the anisotropy of an element.A kind of quasi-Wilson element is considered for second-orderproblems on narrow quadrilateral meshes for which the usualregularity condition K/hK c0 > 0 is not satisfied, wherehK is the diameter of the element K and K is the radius of thelargest inscribed circle in K. Anisotropic error estimates ofthe interpolation error and the consistency error in the energynorm and the L2-norm are given. Furthermore, we give a Poincaréinequality on a trapezoid which improves a result of eniek.  相似文献   

10.
A Delaunay-type mesh condition is developed for a linear finite element approximation of two-dimensional anisotropic diffusion problems to satisfy a discrete maximum principle.The condition is weaker than the existing anisotropic non-obtuse angle condition and reduces to the well known Delaunay condition for the special case with the identity diffusion matrix.Numerical results are presented to verify the theoretical findings.  相似文献   

11.
利用自适应Delaunay三角剖分并结合胞格中心迎风算法,分析非粘滞高速可压缩流体问题.推导了多维耗散格式,并采用非结构化三角网格的迎风算法,改善了激波的计算结果.解精度评价中引入误差估计,在网格重划分算法中,解梯度变化大的区域生成小单元格,解梯度变化小的区域使用大单元格.该格式能进一步推广到高阶时空的解精度分析中.通过稳态和不稳态的高速可压缩流体超音速激波和激波传播特性的分析,可以评估该算法的效率.  相似文献   

12.
<正>A modified polynomial preserving gradient recovery technique is proposed. Unlike the polynomial preserving gradient recovery technique,the gradient recovered with the modified polynomial preserving recovery(MPPR) is constructed element-wise, and it is discontinuous across the interior edges.One advantage of the MPPR technique is that the implementation is easier when adaptive meshes are involved.Superconvergence results of the gradient recovered with MPPR are proved for finite element methods for elliptic boundary problems and eigenvalue problems under adaptive meshes. The MPPR is applied to adaptive finite element methods to construct asymptotic exact a posteriori error estimates.Numerical tests are provided to examine the theoretical results and the effectiveness of the adaptive finite element algorithms.  相似文献   

13.
李清善  孙会霞 《数学季刊》2007,22(3):388-394
The paper studies the convergence and the superconvergence of the biquadratic finite element for Poisson' problem on anisotropic meshes.By detailed analysis,it shows that the biquadratic finite element is anisotropically superconvergent at four Gauss points in the element.  相似文献   

14.
We study the superconvergence of the finite volume element (FVE) method for solving convection‐diffusion equations using bilinear trial functions. We first establish a superclose weak estimate for the bilinear form of FVE method. Based on this estimate, we obtain the H1‐superconvergence result: . Then, we present a gradient recovery formula and prove that the recovery gradient possesses the ‐order superconvergence. Moreover, an asymptotically exact a posteriori error estimate is also given for the gradient error of FVE solution.Copyright © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 1152–1168, 2014  相似文献   

15.
Advancing front techniques are a family of methods for finite element mesh generation that are particularly effective in dealing with complicated boundary geometries. In the first part of this paper, conditions are presented which ensure that any planar aft algorithm that meets these conditions terminates in a finite number of steps with a valid triangulation of the input domain. These conditions are described by specifying a framework of subtasks that can accommodate many aft methods and by prescribing the minimal requirements on each subtask that ensure correctness of an algorithm that conforms to the framework.An important efficiency factor in implementing an aft is the data structure used to represent the unmeshed regions during the execution of the algorithm. In the second part of the paper, we discuss the use of the constrained Delaunay triangulation as an efficient abstract data structure for the unmeshed regions. We indicate how the correctness conditions of the first part of the paper can be met using this representation. In this case, we also discuss the additional requirements on the framework which ensure that the generated mesh is a constrained Delaunay triangulation for the original boundary.The first author has been supported by CERFACS, Toulouse, France. Support was provided to the second author by the Natural Sciences and Engineering Research Council of Canada, and by the Information Technology Research Centre of Ontario.  相似文献   

16.
In this paper, we discuss the error estimation of the linear finite element solution on criss-cross mesh. Using space orthogonal decomposition techniques, we obtain an asymptotic expansion and superconvergence results of the finite element solution. We first prove that the asymptotic expansion has different forms on the two kinds of nodes and then derive a high accuracy combination formula of the approximate derivatives.  相似文献   

17.
A lumped mass approximation scheme of a low order Crouzeix-Raviart type noncon- forming triangular finite element is proposed to a kind of nonlinear parabolic integro-differential equations. The L2 error estimate is derived on anisotropic meshes without referring to the traditional nonclassical elliptic projection.  相似文献   

18.
We consider a Galerkin finite element method that uses piecewise bilinears on a class of Shishkin‐type meshes for a model singularly perturbed convection‐diffusion problem on the unit square. The method is shown to be convergent, uniformly in the diffusion parameter ϵ, of almost second order in a discrete weighted energy norm. As a corollary, we derive global L2‐norm error estimates and local L‐norm estimates. Numerical experiments support our theoretical results. © 2000 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 16:426–440, 2000  相似文献   

19.
Mathematical proofs are presented for the derivative superconvergence obtained by a class of patch recovery techniques for both linear and bilinear finite elements in the approximation of second‐order elliptic problems. © 1999 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 15: 151–167, 1999  相似文献   

20.
Directional, anisotropic features like layers in the solution of partial differential equations can be resolved favorably by using anisotropic finite element meshes. An adaptive algorithm for such meshes includes the ingredients Error estimation and Information extraction/Mesh refinement. Related articles on a posteriori error estimation on anisotropic meshes revealed that reliable error estimation requires an anisotropic mesh that is aligned with the anisotropic solution. To obtain anisotropic meshes the so‐called Hessian strategy is used, which provides information such as the stretching direction and stretching ratio of the anisotropic elements. This article combines the analysis of anisotropic information extraction/mesh refinement and error estimation (for several estimators). It shows that the Hessian strategy leads to well‐aligned anisotropic meshes and, consequently, reliable error estimation. The underlying heuristic assumptions are given in a stringent yet general form. Numerical examples strengthen the exposition. Hence the analysis provides further insight into a particular aspect of anisotropic error estimation. © 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 18: 625–648, 2002; DOI 10.1002/num.10023  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号