首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phase equilibria in the systems M2MoO4-Cr2(MoO4)3-Zr(MoO4)2 (M = Li, Na, or Rb) were investigated by X-ray powder diffraction analysis, DTA, and IR spectroscopy. The subsolidus structure of the phase diagrams of the systems under study was established. Two phases are formed in the Rb2MoO4-Cr2(MoO4)3-Zr(MoO4)2 system with the molar ratios of the starting components equal to 5: 1: 1 (S 2) and 1: 1: 1 (S 1). Proceeding from that the isostructurality of Rb5FeHf(MoO4)6 and S 2 the unit cell, parameters are determined for S 2.  相似文献   

2.
Trilithium aluminium trimolybdate(VI), Li3Al(MoO4)3, has been grown as single crystals from α‐Al2O3 and MoO3 in an Li2MoO4 flux at 998 K. This compound is an example of the well known lyonsite structure type, the general formula of which can be written as A16B12O48. Because this structure can accomodate cationic mixing as well as cationic vacancies, a wide range of chemical compositions can adopt this structure type. This has led to instances in the literature where membership in the lyonsite family has been overlooked when assigning the structure type to novel compounds. In the title compound, there are two octahedral sites with substitutional disorder between Li+ and Al3+, as well as a trigonal prismatic site fully occupied by Li+. The (Li,Al)O6 octahedra and LiO6 trigonal prisms are linked to form hexagonal tunnels along the [100] axis. These polyhedra are connected by isolated MoO4 tetrahedra. Infinite chains of face‐sharing (Li,Al)O6 octahedra extend through the centers of the tunnels. A mixed Li/Al site, an Li, an Mo, and two O atoms are located on mirror planes.  相似文献   

3.
4.
Two new compounds, namely cubic tricaesium lithium dizinc tetrakis(tetraoxotungstate), Cs3LiZn2(WO4)4, and tetragonal trirubidium dilithium gallium tetrakis(tetraoxomolybdate), Rb3Li2Ga(MoO4)4, belong to the structural family of Cs6Zn5(MoO4)8 (space group I 3d , Z = 4), with a partially incomplete (Zn5/61/6) position. In Cs3LiZn2(WO4)4, this position is fully statistically occupied by (Zn2/3Li1/3), and in Rb3Li2Ga(MoO4)4, the 2Li + Ga atoms are completely ordered in two distinct sites of the space group I 2d (Z = 4). In the same way, the crystallographically equivalent A + cations (A = Cs, Rb) in Cs6Zn5(MoO4)8, Cs3LiZn2(WO4)4 and isostructural A 3LiZn2(MoO4)4 and Cs3LiCo2(MoO4)4 are divided into two sites in Rb3Li2Ga(MoO4)4, as in other isostructural A 3Li2R (MoO4)4 compounds (AR = TlAl, RbAl, CsAl, CsGa, CsFe). In the title structures, the WO4 and (Zn,Li)O4 or LiO4, GaO4 and MoO4 tetrahedra share corners to form open three‐dimensional frameworks with the caesium or rubidium ions occupying cuboctahedral cavities. The tetrahedral frameworks are related to that of mayenite 12CaO·7Al2O3 and isotypic compounds. Comparison of isostructural Cs3M Zn2(MoO4)4 (M = Li, Na, Ag) and Cs6Zn5(MoO4)8 shows a decrease of the cubic lattice parameter and an increase in thermal stability with the filling of the vacancies by Li+ in the Zn position of the Cs6Zn5(MoO4)8 structure, while filling of the cation vacancies by larger Na+ or Ag+ ions plays a destabilizing role. The series A 3Li2R (MoO4)4 shows second harmonic generation effects compatible with that of β′‐Gd2(MoO4)3 and may be considered as nonlinear optical materials with a modest nonlinearity.  相似文献   

5.
Single crystal of Li2Zn2(MoO4)3 has been grown from a flux of Li2MoO4 by the top-seeded solution-growth method,and its structure was refined by the Rietveld method. It belongs to the orthorhombic system,space group Pnma with a=5.1114,b=10.4906 and c=17.6172. Good agreement between the experimental and calculated profile(Rp=6.69%,Rwp=9.73% and Rexp= 6.58%) was reached.  相似文献   

6.
The structures of tripotassium digallium tris(phosphate), K3Ga2(PO4)3, and trisodium gallium bis(phosphate), Na3Ga(PO4)2, have different irregular one‐dimensional alkali ion‐containing channels along the a axis of the orthorhombic and triclinic unit cells, respectively. The anionic subsystems consist of vortex‐linked PO4 tetrahedra and GaO4 tetrahedra or GaO5 trigonal bipyramids in the first and second structure, respectively.  相似文献   

7.
The calculations of EPR parameters (g factors g||, g(perpendicular) and zero-field splitting D) related to the impurity structures have been made from the high-order perturbation formulas for Cr(3+) ions in trigonal KSc(MoO(4))(2), RbIn(MoO(4))(2) and RbSc(MoO(4))(2) crystals. It is found that the MO(6) octahedra in these crystals change from the trigonal elongation in the pure crystals to the trigonal compression in the impurity centers. The results are discussed.  相似文献   

8.
The Tl2MoO4-Nd2(MoO4)3-Hf(MoO4)2 system was studied in the subsolidus region using X-ray powder diffraction. New triple molybdates were found to exist in this system: Tl5NdHf(MoO4)6 (5: 1: 2), TlNdHf0.5(MoO4)3 (1: 1: 1), and Tl2NdHf2(MoO4)6.5 (2: 1: 4). The first TlNd(MoO4)2 single crystals were grown from melt solutions with spontaneous nucleation. Their crystal structure was refined from X-ray diffraction data (Bruker X8 Apex automated diffractometer, MoK α radiation, 386 F(hkl), R = 0.0136). The tetragonal unit cell parameters are as follows: a = 6.3000(2) Å, c = 9.5188(5) Å, V = 377.80(3) Å3, Z = 2, ρcalcd = 5.876 g/cm3, space group P4/nnc. The structure is a framework built of NdO8 and TlO8 tetragonal antiprisms linked via shared lateral edges and alternating in the checkerboard order. Layers share oxygen vertices with MoO4 interlayer tetrahedra and are linked into the framework.  相似文献   

9.
The subsolidus region of the ternary salt system Tl2MoO4-Fe2(MoO4)3-Hf(MoO4)2 was studied by X-ray powder diffraction. New compounds Tl5FeHf(MoO4)6 (5: 1: 2) and Tl(Fe,Hf0.5)(MoO4)3 (1: 1: 1). were found to be formed in this system. Crystals of new ternary molybdate of the composition Tl(FeHf0.5)(MoO4)3 were grown by spontaneous flux crystallization. Its composition and crystal structure were refined based on X-ray diffraction data. The mixed three-dimensional framework of the crystal structure is composed of Mo tetrahedra sharing O vertices with (Fe,Hf)O6 octahedra. The thallium atoms occupy wide channels in the framework.  相似文献   

10.
Two new isotypic triple molybdates, namely tri­cesium lithium dicobalt tetra­kis­(tetra­oxo­molybdate), Cs3LiCo2(MoO4)4, and tri­rubidium lithium dizinc tetra­kis­(tetra­oxo­molybdate), Rb3LiZn2(MoO4)4, crystallize in the non‐centrosymmetric cubic space group I3d and adopt the Cs6Zn5(MoO4)8 structure type. In the parent structure, the Zn positions have 5/6 occupancy, while they are fully occupied by statistically distributed M2+ and Li+ cations in the title compounds. In both structures, all corners of the (M2/3Li1/3)O4 tetra­hedra (M = Co and Zn), having point symmetry , are shared with the MoO4 tetra­hedra, which lie on threefold axes and share corners with three (M,Li)O4 tetra­hedra to form open mixed frameworks. Large alkaline cations occupy distorted cubocta­hedral cavities with symmetry. The mixed tetra­hedral frameworks in the structures are close to those of mayenite (12CaO·7Al2O3) and the related compounds 11CaO·7Al2O3·CaF2, wadalite (Ca6Al5Si2O16Cl3) and Na6Zn3(AsO4)4·3H2O, but the terminal vertices of the MoO4 tetra­hedra are directed in opposite directions along the threefold axes compared with the configurations of Al(Si)O4 or AsO4 tetra­hedra. The cation arrangements in Cs3LiCo2(MoO4)4, Rb3LiZn2(MoO4)4 and Cs6Zn5(MoO4)8 repeat the structure of Y3Au3Sb4, being stuffed derivatives of the Th3P4 type.  相似文献   

11.
12.
《Thermochimica Acta》1987,112(2):245-257
The phase diagram of the system Gd2(MoO4)3-Bi(MoO4)3 has been studied by differential thermal analysis (DTA). Sealed platinum tubes were used as sample holders, in order to prevent the loss of Bi2O3 and MoO3 through volatilization at high temperature. Various solid solutions and new phases are reported: α-Gd2-x-Bix(MoO4)3, β -Gd2-x-Bix(MoO4)3, α-Bi2-xGdx(MoO4)3, 3Gd2(MoO4)3·2Bi2(MoO4)3, etc.  相似文献   

13.
Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences. Institute of Physics, Siberian Branch, Russian Academy of Sciences. Buryat Institute of Natural Sciences, Siberian Branch, Russian Academy of Sciences. Translated from Zhurnal Strukturnoi Khimii, Vol. 33, No. 3, pp. 126–130, May–June, 1992.  相似文献   

14.
The systems Cs2MoO4?R2(MoO4)3?Zr(MoO4)2, where R = Al, Sc, or In, have been investigated in the subsolidus region by X-ray powder diffraction. Quasi-binary joins have been revealed, and triangulation has been carried out. Six new triple molybdates have been prepared with the component ratio equal to 1 : 1 : 1 (mol/mol) (S 1) and 5 : 1 : 2 (S 2). The crystal parameters for the 5 : 1 : 2 compounds have been determined, and the electrical properties of the 1 : 1 : 1 compounds have been investigated.  相似文献   

15.
The systems Rb2MoO4-R2(MoO4)3-Hf(MoO4)2 have been investigated in the subsolidus region by X-ray powder diffraction, DTA, and IR spectroscopy. Triple molybdates of the composition 5: 1: 2 are formed in the systems with R = Al, In, Sc, and Fe. Molybdates of composition 5: 1: 3 and 1: 1: 1 are found in the iron(III)-containing system in addition to the 5: 1: 2 molybdate. Single crystals of the double molybdate RbFe(MoO4)2, which is formed in the Rb2MoO4-Fe2(MoO4)3 system, have been grown. The structure of this double molybdate has been refined using X-ray diffraction data (X8 APEX automated diffractometer, MoK α radiation, 373 F(hkl), R = 0.0287). The trigonal unit cell parameters are the following: a = b = 5.6655(2) Å, c = 7.5061(4) Å, V = 208.65(1) Å3, Z = 1, ρcalc = 3.670 g/cm3, space group R3m1. The structure is formed by layers of FeO6 octahedra sharing corners with MoO4 tetrahedra and RbO12 icosahedra.  相似文献   

16.
Three metal molybdate hydrates,Fe(H2O)2(MoO4)2·H3O(FeMo),NaCo2(MoO4)2(H3O2)(CoMo)and Mn2(MoO4)3·2H3O(MnMo),were synthesized by the mixed-solvent-thermal methods and characterized by singlecrystal X-ray...  相似文献   

17.
Binary molybdates K4M2+ (MoO4)3 (M2+=Mg, Mn, Co) isostructural to triclinic \ga-K4Zn(WO4)3 were synthesized, and optimal conditions for their spontaneous crystallization were found. It was established by XRPA and DTA that at 530°C the structure of the compound with cobalt undergoes a transition to the orthorhombic structure of K4Zn(MoO4)3. The structure of K4Mn(MoO4)3 was determined from single crystal diffraction data (a=7.613, b=9.955, c=10.156 Å,α=92.28,β=106.66,γ=105.58°, Z=2, space group $P\bar 1$ , R=0.030). In this compound, Mn has a higher coordination number (CN=5+1) than that of Zn inα-K4Zn(WO4)3 (CN=4+1). The main structural feature is pairs of MnO6 octahedra linked by the bridging MoO4 tetrahedra into ribbons stretching along the a axis. The structure is compared with related structures of binary molybdates and other members of the alluaudite family.  相似文献   

18.
The subsolidus region of the Ag2MoO4-CoMoO4-Al2(MoO4)3 ternary salt system was studied by X-ray powder diffraction analysis. New compounds Ag1?x Co1?x Al1 + x (MoO4)3 (0 ≤ x ≤ 0.4) and AgCo3Al(MoO4)5 were detected to form. The variable-composition phase Ag1?x Co1?x Al1 + x (MoO4)3 is of the NASICON structure type (space group \(R\bar 3c\) ). AgCo3Al(MoO4)5 crystallizes in the triclinic symmetry (space group \(P\bar 1\) Z = 2) with the unit cell parameters a = 6.9101(6), b = 17.519(1), c = 6.8241(6) Å, α = 87.356(7)°, β = 101.078(7)°, and γ = 91.985(9)°. The compounds are thermally stable until 770–780 and 760°C, respectively.  相似文献   

19.
The subsolidus region of the Rb2MoO4-Er2(MoO4)3-Hf(MoO4)2 ternary salt system is studied using X-ray powder diffraction. A novel 5: 1: 2 triple molybdate, Rb5ErHf(MoO4)6, is found to form in the system. Crystals of Rb5ErHf(MoO4)6 are flux-grown under spontaneous nucleation conditions. The composition and crystal structure of Rb5ErHf(MoO4)6 are refined in a single-crystal X-ray diffraction experiment (X8 APEX diffractometer, MoK α radiation, 1753 reflections, R = 0.0183). The crystals are trigonal; a = 10.7511(1) Å, c = 38.6543(7) Å, V = 3869.31(9) Å3, d calc = 4.462 g/cm3, Z = 6, space group $R\bar 3c$ . The mixed three-dimensional framework of the structure is formed of MoO4 tetrahedra, each sharing corners with two ErO6 and HfO6 octahedra. Two types of Rb atoms occupy large cavities of the framework. The distribution of the Er3+ and Hf4+ cation over two positions is refined in the course of structure solution.  相似文献   

20.
X-ray diffraction and differential-thermal analyses were used to study the phase relations in the subsolidus region of the system Li2MoO4-BaMoO4-R2(MoO4)3. The temperature dependence of the conductivity of Li3Ba2R3(MoO4)8 phases (R = Y, Eu, Sm, La) was examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号