首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An approach for the preparation of block copolymer vesicles through ultrasonic treatment of polystyrene‐block‐poly(2‐vinyl pyridine) (PS‐b‐P2VP) micelles under alkaline conditions is reported. PS‐b‐P2VP block copolymers in toluene, a selective solvent for PS, form spherical micelles. If a small amount of NaOH solution is added to the micelles solution during ultrasonic treatment, organic‐inorganic Janus‐like particles composed of the PS‐b‐P2VP block copolymers and NaOH are generated. After removal of NaOH, block copolymer vesicles are obtained. A possible mechanism for the morphological transition from spherical micelles to vesicles or Janus‐like particles is discussed. If the block copolymer micelles contain inorganic precursors, such as FeCl3, hybrid vesicles are formed, which may be useful as biological and chemical sensors or nanostructured templates. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 953–959  相似文献   

2.
Poly(2‐hydroxyethyl acrylate)–poly(n‐butyl acrylate) block copolymers were synthesized with the reversible addition–fragmentation chain transfer (RAFT) process. The block copolymers were synthesized successfully with either poly(2‐hydroxyethyl acrylate) or poly(n‐butyl acrylate) macro‐RAFT agents. The resulting block copolymers had narrow molecular weight distributions (polydispersity index = 1.3–1.4). Copolymer self‐aggregation in water yielded micelles, with the hydrodynamic diameter (Dh) values of the aggregates dependent on the length of both blocks according to DhNBA1.17NHEA0.57, where NBA is the number of repeating units of n‐butyl acrylate and NHEA is the number of repeating units of 2‐hydroxyethyl acrylate. The micelles were subsequently stabilized via chain extension of the block copolymer with a crosslinking agent. The successful chain extension in a micellar system was confirmed by an increase in the molecular weight, which was detected with membrane osmometry. The crosslinked particles showed noticeably different aggregation behavior in diverse solvent systems. The uncrosslinked micelles formed by the block copolymer (NHEA = 260, NBA = 75) displayed a definite critical micelle concentration at 5.4 × 10?4 g L?1 in aqueous solutions. However, upon crosslinking, the critical micelle concentration transition became obscure. © 2006Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2177–2194, 2006  相似文献   

3.
In this article, the synthesis and self‐assembly of a novel well‐defined biocompatible amphiphilic POEGMA‐PDMS‐POEGMA triblock copolymer were studied. The copolymer was synthesized by atom transfer radical polymerization of oligo(ethylene glycol) methyl ether methacrylate (OEGMA) using α,ω‐dibromo polydimethylsiloxane macroinitiator (Br‐PDMS‐Br). Br‐PDMS‐Br was synthesized through the esterification of α,ω‐hydroxypropyl polydimethylsiloxane and 2‐bromoisobutyryl bromide. The structures of the copolymers were confirmed by proton nuclear magnetic resonance spectroscopy, and gel permeation chromatography. The copolymers showed reversible aggregation in response to temperature cycles with a lower critical solution temperature (LCST) between 61 and 66 °C, as determined by ultraviolet‐visible spectrophotometry and dynamic light scattering. The LCST values increased in proportion to the length of the hydrophilic block and were lower than that of the POEGMA homopolymer. The self‐assembly behavior of the copolymers in aqueous solution was investigated by fluorescence spectroscopy and transmission electron microscopy. The critical micelle concentration value (1.08–0.26 10?6 mol L?1) decreased as the length of the POEGMA chain increased. The POEGMA‐PDMS‐POEGMA copolymers can easily self‐assemble into spherical micelles in aqueous solution. Such biocompatible block copolymers may be attractive candidates as ‘‘smart'' thermo‐responsive drug delivery systems. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2684‐2691  相似文献   

4.
Mixed micelles of polystyrene‐b‐poly(N‐isopropylacrylamide) (PS‐b‐PNIPAM) and two polystyrene‐b‐poly(ethylene oxide) diblock copolymers (PS‐b‐PEO) with different chain lengths of polystyrene in aqueous solution were prepared by adding the tetrahydrofuran solutions dropwise into an excess of water. The formation and stabilization of the resultant mixed micelles were characterized by using a combination of static and dynamic light scattering. Increasing the initial concentration of PS‐b‐PEO in THF led to a decrease in the size and the weight average molar mass (〈Mw〉) of the mixed micelles when the initial concentration of PS‐b‐ PNIPAM was kept as 1 × 10?3 g/mL. The PS‐b‐PEO with shorter PS block has a more pronounced effect on the change of the size and 〈Mw〉 than that with longer PS block. The number of PS‐b‐PNIPAM in each mixed micelle decreased with the addition of PS‐b‐PEO. The average hydrodynamic radius 〈Rh〉 and average radius of gyration 〈Rg〉 of pure PS‐b‐PNIPAM and mixed micelles gradually decreased with the increase in the temperature. Both the pure micelles and mixed micelles were stable in the temperature range of 18 °C–39 °C. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1168–1174, 2010  相似文献   

5.
Symmetric polystyrene (PS)–poly(dimethylsiloxane) (PDMS) diblock copolymers were mixed into a 20% dispersion of PDMS in PS. The effect of adding the block copolymer on the blend morphology was examined as a function of the block copolymer molecular weight (Mn,bcp), concentration, and viscosity ratio (ηr). When blended together with the PS and PDMS homopolymers, most of the block copolymer appeared as micelles in the PS matrix. Even when the copolymer was preblended into the PDMS dispersed phase, block copolymer micelles in the PS matrix phase were observed with transmission electron microscopy after mixing. Adding 16 kg/mol PS–PDMS block copolymer dramatically reduced the PDMS particle size, but the morphology, as examined by scanning electron microscopy, was unstable upon thermal annealing. Adding 156 kg/mol block copolymer yielded particle sizes similar to those of blends with 40 or 83 kg/mol block copolymers, but only blends with 83 kg/mol block copolymer were stable after annealing. For a given value of Mn,bcp, a minimum PDMS particle size was observed when ηr ~ 1. When ηr = 2.6, thermally stable, submicrometer particles as small as 0.6 μm were observed after the addition of only 3% PS–PDMS diblock (number‐average molecular weight = 83 kg/mol) to the blend. As little as 1% 83 kg/mol block copolymer was sufficient to stabilize a 20% dispersion of 1.1‐μm PDMS particles in PS. Droplet size reduction was attributed to the prevention of coalescence caused by small amounts of block copolymer at the interface. The conditions under which block copolymer interfacial adsorption and interpenetration were facilitated were explained with Leibler's brush theory. © 2002 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 40: 346–357, 2002; DOI 10.1002/polb.10098  相似文献   

6.
Characterization of block size in poly(ethylene oxide)‐b‐poly(styrene) (PEO‐b‐PS) block copolymers could be achieved by matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF‐MS) after scission of the macromolecules into their constituent blocks. The performed hydrolytic cleavage was demonstrated to specifically occur on the targeted ester function in the junction group, yielding two homopolymers consisting of the constitutive initial blocks. This approach allows the use of well‐established MALDI protocols for a complete copolymer characterization while circumventing difficulties inherent to amphiphilic macromolecule ionization. Although the labile end‐group in PS homopolymer was modified by the MALDI process, PS block size could be determined from MS data since polymer chains were shown to remain intact during ionization. This methodology has been validated for a PEO‐b‐PS sample series, with two PEO of number average molecular weight (Mn) of 2000 and 5000 g mol?1 and Mn(PS) ranging from 4000 to 21,000 g mol?1. Weight average molecular weight (Mw), and thus polydispersity index, could also be reached for each segment and were consistent with values obtained by size exclusion chromatography. This approach is particularly valuable in the case of amphiphilic copolymers for which Mn values as determined by liquid state nuclear magnetic resonance might be affected by micelle formation. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3380–3390, 2009  相似文献   

7.
This study synthesized thermo‐sensitive amphiphilic block‐graft PNiPAAm‐b‐(PαN3CL‐g‐alkyne) copolymers through ring‐opening polymerization of α‐chloro‐ε‐caprolactone (αClCL) with hydroxyl‐terminated macroinitiator poly(N‐isopropylacrylamide) (PNiPAAm), substituting pendent chlorides with sodium azide. This was then used to graft various kinds of terminal alkynes moieties by means of the copper‐catalyzed Huisgen's 1,3‐dipolar cycloaddition (“click” reaction). 1H NMR, FTIR, and gel permeation chromatography (GPC) was used to characterize these copolymers. The solubility of the block‐graft copolymers in aqueous media was investigated using turbidity measurement, revealing a lower critical solution temperature (LCST) in the polymers. These solutions showed reversible changes in optical properties: transparent below the LCST, and opaque above the LCST. The LCST values were dependant on the composition of the polymer. With critical micelle concentrations (CMCs) in the range of 2.04–9.77 mg L?1, the block copolymers formed micelles in the aqueous phase, owing to their amphiphilic characteristics. An increase in the length of hydrophobic segments or a decrease in the length of hydrophilic segments amphiphilic block‐graft copolymers produced lower CMC values. The research verified the core‐shell structure of micelles by 1H NMR analyses in D2O. Transmission electron microscopy was used to analyze the morphology of the micelles, revealing a spherical structure. The average size of the micelles was in the range of 75–145 nm (blank), and 105–190 nm (with drug). High drug entrapment efficiency and drug loading content were observed in the drug micelles. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

8.
With the aim of accessing colloidally stable, fiberlike, π‐conjugated nanostructures of controlled length, we have studied the solution self‐assembly of two asymmetric crystalline–coil, regioregular poly(3‐hexylthiophene)‐b‐poly(2‐vinylpyridine) (P3HT‐b‐P2VP) diblock copolymers, P3HT23b‐P2VP115 (block ratio=1:5) and P3HT44b‐P2VP115 (block ratio=ca. 1:3). The self‐assembly studies were performed under a variety of solvent conditions that were selective for the P2VP block. The block copolymers were prepared by using Cu‐catalyzed azide–alkyne cycloaddition reactions of azide‐terminated P2VP and alkyne end‐functionalized P3HT homopolymers. When the block copolymers were self‐assembled in a solution of a 50 % (v/v) mixture of THF (a good solvent for both blocks) and an alcohol (a selective solvent for the P2VP block) by means of the slow evaporation of the common solvent; fiberlike micelles with a P3HT core and a P2VP corona were observed by transmission electron microscopy (TEM). The average lengths of the micelles were found to increase as the length of the hydrocarbon chain increased in the P2VP‐selective alcoholic solvent (MeOH<iPrOH<nBuOH). Very long (>3 μm) fiberlike micelles were prepared by the dialysis of solutions of the block copolymers in THF against iPrOH. Furthermore the widths of the fibers were dependent on the degree of polymerization of the chain‐extended P3HT blocks. The crystallinity and π‐conjugated nature of the P3HT core in the fiberlike micelles was confirmed by a combination of UV/Vis spectroscopy, photoluminescence (PL) measurements, and wide‐angle X‐ray scattering (WAXS). Intense sonication (iPrOH, 1 h, 0 °C) of the fiberlike micelles formed by P3HT23b‐P2VP115 resulted in small (ca. 25 nm long) stublike fragments that were subsequently used as initiators in seeded growth experiments. Addition of P3HT23b‐P2VP115 unimers to the seeds allowed the preparation of fiberlike micelles with narrow length distributions (Lw/Ln <1.11) and lengths from about 100‐300 nm, that were dependent on the unimer‐to‐seed micelle ratio.  相似文献   

9.
A novel type of well‐defined graft copolymer, succinylated chitosan‐O‐poly(oligo(ethylene glycol)methacrylate) (SC‐POEGMA), was developed for pH‐reversible poly(ethylene glyocol) (PEG) shielding of cationic nanocarriers. Chitosan‐O‐POEGMA (CS‐POEGMA) was first synthesized via single electron transfer‐living radical polymerization of oligo(ethylene glyol) methacrylate (OEGMA) using O‐brominated chitosan (CS‐Br) as a macromolecular initiator and Cu(I)Br/1,1,4,7,10,10‐hexamethyltriethylenetetramine as a catalyst. The subsequent succinylation of the chitosan backbone gave the titled copolymers. The content of POEGMA in CS‐POEGMA could be widely modulated by varying the degree of bromination and feed ratio of OEGMA to CS‐Br, without compromising the amino density of chitosan backbone. The hierarchical assembly between SC‐POEGMA and trimethylated chitosan‐O‐poly(ε‐caprolactone) (TMC‐PCL) micelles was further studied. At pH 7.4, the stoichiometric interactions between SC and TMC segments to form polyampholyte–polyelectrolyte complexes led to the formation of PEG‐shielded micelles. The hierarchially assembled micelles could be disassembled into the pristine TMC‐PCL micelles, when the medium pH was below a certain pH (pHφ). By varying the degree of succinylation of SC‐POEGMA, the pHφ value could be facilely modulated from 6.5 to 3.5 to meet the needs for specific biomedical applications. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

10.
Double hydrophilic poly(ethylene oxide)‐b‐poly(N‐isopropylacrylamide) (PEO‐b‐PNIPAM) block copolymers were synthesized via reversible addition‐fragmentation chain transfer (RAFT) polymerization, using a PEO‐based chain transfer agent (PEO‐CTA). The molecular structures of the copolymers were designed to be asymmetric with a short PEO block and long PNIPAM blocks. Temperature‐induced aggregation behavior of the block copolymers in dilute aqueous solutions was systematically investigated by a combination of static and dynamic light scattering. The effects of copolymer composition, concentration (Cp), and heating rate on the size, aggregation number, and morphology of the aggregates formed at temperatures above the LCST were studied. In slow heating processes, the aggregates formed by the copolymer having the longest PNIPAM block, were found to have the same morphology (spherical “crew‐cut” micelles) within the full range of Cp. Nevertheless, for the copolymer having the shortest PNIPAM block, the morphology of the aggregates showed a great dependence on Cp. Elongation of the aggregates from spherical to ellipsoidal or even cylindrical was observed. Moreover, vesicles were observed at the highest Cp investigated. Fast heating leads to different characteristics of the aggregates, including lower sizes and aggregation numbers, higher densities, and different morphologies. Thermodynamic and kinetic mechanisms were proposed to interpret these observations, including the competition between PNIPAM intrachain collapse and interchain aggregation. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4099–4110, 2009  相似文献   

11.
Three amphiphilic rod‐coil diblock copolymers, poly(2‐ethyl‐2‐oxazoline‐b‐γ‐benzyl‐L ‐glutamate) (PEOz‐b‐PBLG), incorporating the same‐length PEOz block length and various lengths of their PBLG blocks, were synthesized through a combining of living cationic and N‐carboxyanhydride (NCA) ring‐opening polymerizations. In the bulk, these block copolymers display thermotropic liquid crystalline behavior. The self‐assembled aggregates that formed from these diblock copolymers in aqueous solution exhibited morphologies that differed from those obtained in α‐helicogenic solvents, that is, solvents in which the PBLG blocks adopt rigid α‐helix conformations. In aqueous solution, the block copolymers self‐assembled into spherical micelles and vesicular aggregates because of their amphiphilic structures. In helicogenic solvents (in this case, toluene and benzyl alcohol), the PEOz‐b‐PBLG copolymers exhibited rod‐coil chain properties, which result in a diverse array of aggregate morphologies (spheres, vesicles, ribbons, and tube nanostructures) and thermoreversible gelation behavior. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3108–3119, 2008  相似文献   

12.
The block copolymerization of tert‐butyl methacrylate (tBMA) with a difunctionalized polystyrene (PS) macroinitiator was investigated. The polymerizations were performed under UV light irradiation using PS bearing α‐ and ω‐functionalized end groups containing diethyldithiocarbamyl groups as a macroiniferter. Kinetic studies indicate the molecular weights of triblock copolymers increased linearly with the conversion. Block copolymers with different lengths of PtBMA segments were easily prepared by varying the ratio of tBMA and PS macroiniferter or by controlling the monomer conversion. The formations of block copolymers were characterized by gel permeation chromatographic, 1H NMR, and DSC analyses. PtBMA segments of the triblock copolymer were subsequently hydrolyzed quantitatively to poly(methacrylic acid) segments using concentrated HCl as a catalyst in a refluxing solution of dioxane, and then an amphiphilic ABA triblock copolymer was produced. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1450–1455, 2001  相似文献   

13.
Here we report the synthesis and solution characterization of a novel series of AB diblock copolymers with neutral, water‐soluble A blocks consisting of N,N‐dimethylacrylamide and pH‐responsive B blocks of N,N‐dimethylvinylbenzylamine. To our knowledge, this represents the first example of an acrylamido–styrenic block copolymer prepared directly in a homogeneous aqueous solution. The best blocking order [with poly(N,N‐dimethylacrylamide) as a macro‐chain‐transfer agent] yielded well‐defined block copolymers with minimal homopolymer impurities. The reversible aggregation of these block copolymers in aqueous media was studied with 1H NMR spectroscopy and dynamic light scattering. Finally, an example of core‐crosslinked micelles was demonstrated by the addition of a difunctional crosslinking agent to a micellar solution of the parent block copolymer. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1724–1734, 2004  相似文献   

14.
The successful synthesis is described for a donor–acceptor rod–coil block copolymer comprising blocks of poly[2,7‐(9,9‐dihexylfluorene)‐alt‐bithiophene] (F6T2) and polystyrene functionalized with fullerene (PS(C60)) (F6T2‐b‐PS(C60)). This new material was obtained by combining Suzuki polycondensation with radical addition fragmentation chain transfer. The block copolymer was characterized by nuclear magnetic resonance, gel permeation chromatography, and optical spectroscopy methods. Photophysical data for (F6T2‐b‐PS(C60)) and a related block copolymer (F6T2‐b‐PS(PCBM)) (PCBM, phenyl‐C61‐butyric acid methyl ester) are reported and their performance as compatibilizers in bulk heterojunction organic solar cells is assessed. It is demonstrated that the addition of the rod–coil block copolymers to the active layer extends the operational stability of organic photovoltaic devices. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 888–903  相似文献   

15.
Block and random copolymers of poly(3‐hexylthiophene) and poly[3‐(2‐(6‐carboxyhexyl)methyl)thiophene] with side‐chain carboxylic functionality ((P3HT‐b‐P3COOH) and (P3HT‐r‐P3COOH) were developed by Grignard Metathesis (GRIM) polymerization. The carboxylic functionality was introduced in the side chain via the oxazoline route. Both the block and random polythiophene copolymers were complexed with pyridine functionalized perylene bisimide to obtain supramolecular block and random polymer complexes. The complex formation in both systems was confirmed by 1H NMR, WXRD and SAXS studies. An expansion of d spacing upon complex formation was observed in both the block and random copolymer, which could be traced by WXRD. Hole and electron mobilities measured for the supramolecular complexes indicated values which were higher by an order of magnitude for the supramolecular block complex (μh ≈ 2.9 × 10−4 cm2/Vs; μe ≈ 3.1 × 10−6 cm2/Vs) as compared to the random (μh ≈ 1.4 × 10−5 cm2/Vs; μe ≈ 4.7 × 10−7 cm2/Vs) copolymer. These results are indicative of the higher degree of disorder prevailing in the films of random copolymer system compared to the block copolymer. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1574–1583  相似文献   

16.
Copper(I)‐mediated living radical polymerization was used to synthesize amphiphilic block copolymers of poly(n‐butyl methacrylate) [P(n‐BMA)] and poly[(2‐dimethylamino)ethyl methacrylate] (PDMAEMA). Functionalized bromo P(n‐BMA) macroinitiators were prepared from monofunctional, difunctional, and trifunctional initiators: 2‐bromo‐2‐methylpropionic acid 4‐methoxyphenyl ester, 1,4‐(2′‐bromo‐2′‐methyl‐propionate)benzene, and 1,3,5‐(2′‐bromo‐2′‐methylpropionato)benzene. The living nature of the polymerizations involved was investigated in each case, leading to narrow‐polydispersity polymers for which the number‐average molecular weight increased fairly linearly with time with good first‐order kinetics in the monomer. These macroinitiators were subsequently used for the polymerization of (2‐dimethylamino)ethyl methacrylate to obtain well‐defined [P(n‐BMA)xb‐PDMAEMAy]z diblock (15,900; polydispersity index = 1.60), triblock (23,200; polydispersity index = 1.24), and star block copolymers (50,700; polydispersity index = 1.46). Amphiphilic block copolymers contained between 60 and 80 mol % hydrophilic PDMAEMA blocks to solubilize them in water. The polymers were quaternized with methyl iodide to render them even more hydrophilic. The aggregation behavior of these copolymers was investigated with fluorescence spectroscopy and dynamic light scattering. For blocks of similar comonomer compositions, the apparent critical aggregation concentration (cac = 3.22–7.13 × 10?3 g L?1) and the aggregate size (ca. 65 nm) were both dependent on the copolymer architecture. However, for the same copolymer structure, increasing the hydrophilic PDMAEMA block length had little effect on the cac but resulted in a change in the aggregate size. © 2002 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 439–450, 2002; DOI 10.1002/pola.10122  相似文献   

17.
Amphiphilic biodegradable block copolymers [poly(sebacic anhydride)–poly(ethylene glycol)–poly(sebacic anhydride)] were synthesized by the melt polycondensation of poly(ethylene glycol) and sebacic anhydride prepolymers. The chemical structure, crystalline nature, and phase behavior of the resulting copolymers were characterized with 1H NMR, Fourier transform infrared, gel permeation chromatography, and differential scanning calorimetry. Microphase separation of the copolymers occurred, and the crystallinity of the poly(sebacic anhydride) (PSA) blocks diminished when the sebacic anhydride unit content in the copolymer was only 21.6%. 1H NMR spectra carried out in CDCl3 and D2O were used to demonstrate the existence of hydrophobic PSA domains as the core of the micelle. In aqueous media, the copolymers formed micelles after precipitation from water‐miscible solvents. The effects on the micelle sizes due to the micelle preparation conditions, such as the organic phase, dropping rate of the polymer organic solution into the aqueous phase, and copolymer concentrations in the organic phase, were studied. There was an increase in the micelle size as the molecular weight of the PSA block was increased. The diameters of the copolymer micelles were also found to increase as the concentration of the copolymer dissolved in the organic phase was increased, and the dependence of the micelle diameters on the concentration of the copolymer varied with the copolymer composition. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1271–1278, 2006  相似文献   

18.
Telechelic copolymers of styrene and different N‐substituted‐maleimides (SMIs) with a molecular weight of 2000–8000 g/mol were synthesized using the starved‐feed‐reactor technique and were nearly bifunctional when the monomer feed had a high styrene concentration. The COOH‐terminated rigid SMI blocks were polycondensated with OH‐terminated poly(tetrahydrofuran) (PTHF) blocks, with a molecular weight of 250–1000 g/mol, which are the flexible parts in the generated homogeneous multiblock copolymer. The entanglement density, which is closely related to the toughness of materials, increased in these flexible SMI copolymers (νe = 5.2 · 1025 m−3) compared to the unflexibilized ones (νe = 2.4 · 1025 m−3). The glass transition temperature of these flexibilized, single‐phase multiblock copolymers was still high enough to qualify them as engineering plastics. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3550–3557, 2000  相似文献   

19.
The synthesis and self‐assembly properties in aqueous solutions of novel amphiphilic block copolymers composed of one hydrophobic poly (lauryl methacrylate), (PLMA) block and one hydrophilic poly (oligo ethylene glycol methacrylate) (POEGMA) block are reported. The block copolymers were prepared by RAFT polymerization and were molecularly characterized by size exclusion chromatography, NMR and FT‐IR spectroscopy, and DSC. The PLMA‐b‐POEGMA amphiphilic block copolymers self‐assemble in nanosized complex nanostructures resembling compound micelles when inserted in aqueous media, as supported by light scattering and TEM measurements. The encapsulation and release of the model, hydrophobic, nonsteroidal anti‐inflammatory drug indomethacin in the polymeric micelles is also investigated. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 155–163  相似文献   

20.
Amphiphilic BuO‐(PEO‐stat‐PPO)‐block‐PLA‐OH diblock and MeO‐PEO‐block‐(PEO‐stat‐PPO)‐block‐PLA‐OH triblock copolymers incorporating thermoresponsive poly(ethylene oxide‐stat‐propylene oxide) (PEO‐stat‐PPO) blocks were prepared by ring‐opening polymerization of lactide (LA) initiated by macroinitiators formed from treating BuO‐(PEO‐stat‐PPO)‐OH and MeO‐PEO‐block‐(PEO‐stat‐PPO)‐OH with AlEt3. MeO‐PEO‐block‐(PEO‐stat‐PPO)‐OH was prepared by coupling MeO‐PEO‐OH and HO‐(PEO‐stat‐PPO)‐OH, followed by chromatographic purification. The cloud points of 0.2% aqueous solutions are between 36 and 46 °C for the diblock copolymers that contain a 50 wt % EO thermoresponsive block and 78 °C for the triblock copolymer that contains a 75 wt % EO thermoresponsive block. Variable temperature 1H NMR spectra recorded on D2O solutions of the diblock copolymers display no PLA resonances below the cloud point and fairly sharp PLA resonances above the cloud point, suggesting that desolvation of the thermoresponsive block increases the miscibility of the two blocks. Preliminary characterization of the micelles formed in aqueous solutions of BuO‐(PEO‐stat‐PPO)‐block‐PLA‐OH conducted using laser scanning confocal microscopy and pulsed gradient spin echo NMR point to significant changes in the size of the micellar aggregates as a function of temperature. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5156–5167, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号