首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The crystal structure of dithallium carbonate, Tl2CO3 (C2/m, Z = 4), was investigated at pressures of up to 7.4 GPa using single‐crystal X‐ray diffraction in a diamond anvil cell. It is stable to at least 5.82 GPa. All atoms except for one of the O atoms lie on crystallographic mirror planes. At higher pressures, the material undergoes a phase transition that destroys the single crystal.  相似文献   

2.
Dark grey (dark red with transmitting light) crystals of heptathallium(I) hexadecaiodo‐tribismuthate(III), Tl7Bi3I16, were obtained by slow cooling of a melt from 800 K to ambient temperature and, with higher crystal quality via solvothermal synthesis in aqueous HI by slowly cooling from 428 to 363 K. The compound is diamagnetic and melts congruently at 630(5) K. X‐ray diffraction on single‐crystals revealed that Tl7Bi3I16 crystallizes in the orthorhombic space group Cmcm with lattice parameters a = 2473.4(5), b = 1441.9(2), c = 3616.9(7) pm. The crystal structure can be interpreted as a layered intergrowth of fragments from the CsNiCl3 and K5Dy3I12 structure types with isolated [BiI6]3? octahedra and [Bi2I10]4? double octahedra. Rotation and distortion of the complex anions establish coordination numbers (c.n.) between 7 and 9 for the Tl+ cations. Dark red crystals of trithallium(I) hexaiodo‐bismuthate(III), Tl3BiI6, are only accessible via hydrothermal synthesis in aqueous HI and slowly cooling from 428 to 363 K. Thermal analysis reveals a peritectoid decomposition at 540(5) K into the neighboring phases Tl7Bi3I16 and TlI. Tl3BiI6 crystallizes in the monoclinic space group P21/c with lattice parameters a = 1352.6(3), b = 899.6(2), c = 1353.8(3) pm, and β = 104.18(3)°. In the crystal structure isolated [BiI6]3? octahedra are arranged according to the motif of a face‐centered pseudo‐cubic packing. Due to the tilted orientation of the [BiI6]3? groups the Tl+ cations have c.n. of 8 and 9. Although the crystal structure of Tl3BiI6 looks like a distorted variant of the elpasolith type, there is no symmetry relation according to a group subgroup formalism.  相似文献   

3.
Complex formation between N,N,N′,N′‐tetrakis(2‐aminoethyl)ethane‐1,2‐diamine (penten) and the metal ions Mn2+, Co2+, Cu2+, Zn2+, Cd2+, Hg2+, Ag+, Pb2+, and Tl3+ (in 1.00M NaNO3 and 25°) was investigated by potentiometry and spectrophotometry. These are the first reported values of the stability constants for this ligand with Ag+, Pb2+, and Tl3+. The X‐ray crystal structure of [Tl(NO3)(penten)](NO3)2 was determined. In this structure, Tl3+ shows a coordination number of seven made up of the six N‐donors and one O‐atom of NO.  相似文献   

4.
A new thallium(I) coordination polymer, [Tl2L · H2O]n ( 1 ) [H2L = 5‐(4‐hydroxyphenyl)tetrazole], was synthesized and characterized by IR spectroscopy, elemental analysis, and X‐ray crystallography. The single‐crystal X‐ray diffraction data of compound 1 show the existence of two different TlI ions with differing coordination numbers. The coordination number of TlI(1) is four and that of TlI(2) is two. This coordination polymer was used as a precursor for the preparation of TlIII oxide nanoparticles. Thallium(III) oxide was characterized by powder X‐ray diffraction and the morphology of nanoparticles characterized by scanning electron microscope (SEM).  相似文献   

5.
The structure of thallium fluoro­beryllate, Tl2BeF4, has been analysed by the Rietveld method on neutron diffraction patterns collected at 1.5, 50, 100, 150, 200 and 300 K, with the aim of detecting low‐temperature instabilities. Atomic parameters based on the isomorphic β‐K2SO4 crystal in the paraelectric phase were used as the starting model at room temperature; no evidence for any phase transition has been detected at lower temperature. The structure was determined in the ortho­rhom­bic space group Pnma. All the atoms (except one F atom) occupy sites with m symmetry. We have compared the structure with those of other compounds of the β‐K2SO4 family, at room temperature, in order to gain insight into their observed instabilities. The irregular coordination of the cations may indicate stereochemical activity of the TlI lone pair but does not indicate a possible structural instability.  相似文献   

6.
The crystal structure of ammonium rubidium nonaoxotetratellurate(IV) dihydrate has been studied as a function of pressure up to 7.40 GPa. The ambient‐pressure structure is characterized by the co‐existence of three different Te—O polyhedra (TeO3, TeO4 and TeO5), which are connected to form layers. NH4+, H2O and Rb+ are incorporated between the layers. Both the Rb1 position, which is located on a twofold axis, and the Rb2 position are partially occupied. The three different types of coordination polyhedra around Te4+ are stable up to at least 5.05 GPa. No phase transition is observed. The fit of the unit‐cell volume as a function of pressure gives a zero‐pressure bulk modulus of 34 (1) GPa with a zero‐pressure volume of V0 = 2620 (4) Å3 [B′ = 1.4 (2)].  相似文献   

7.
The effect of pressure on the crystal structure of thallium selenate (Tl2SeO4) (Pmcn, Z=4), containing the Tl+ cations with electron lone pairs, has been studied with single-crystal X-ray diffraction in a diamond anvil cell up to 3.64 GPa at room temperature. No phase transition has been observed. The compressibility data are fitted by a Murnaghan equation of state with the zero-pressure bulk modulus B0=29(1) GPa and the unit-cell volume at ambient pressure V0=529.6(8) Å3 (B′=4.00). Tl2SeO4 is the least compressible in the c direction, while the pressure-induced changes of the a and b lattice parameters are quite similar. These observations can be explained by different pressure effects on the nine- and 11-fold coordination polyhedra around the two non-equivalent Tl atoms. The SeO42− tetrahedra are not rigid units and become more distorted. Their contribution to the compressibility is small. The effect of pressure on the isotypical oxide materials A2TO4 with the β-K2SO4 structure is discussed. It appears that the presence of electron lone pairs on the Tl+ cation does not seem to influence the compressibility of Tl2SeO4.  相似文献   

8.
Cs10Tl6TtO4 (Tt = Si, Ge) and Cs10Tl6SnO3 were synthesized by the reaction of appropriate starting materials at 623–673 K, followed by fast cooling or quenching to room temperature, in arc‐welded tantalum ampoules. According to single‐crystal X‐ray analyses, the compounds crystallize in new structure types (Cs10Tl6TtO4 (Tt = Si, Ge), P21/c and Cs10Tl6SnO3, Pnma), consisting of [Tl6]6– clusters, which can be characterized as distorted octahedra compressed along one of the fourfold axes of an originally unperturbed octahedron, and [SiO4]4–, [GeO4]4– or [SnO3]4– anions. The oxotetrelate thallides can be regarded as “double salts”, which consist of Cs6Tl6 on one side and respective oxosilicates, ‐germanates and ‐stannates on the other, showing almost not any direct interaction between the two anionic moieties, as might be expressed e.g. by the formula [Cs6Tl6][Cs4SiO4]. In contrast to the silicon and germanium compounds, where the oxidation state of the tetrel atom is unambiguously 4+, for the threefold coordinated tin atom in Cs10Tl6SnO3 an oxidation state of 2+ has to be assumed. Thus, the latter reveal further evidence that the so called “hypoelectronic” [Tl6]6– cluster does not require additional electrons and is intrinsically stable. The distortion of [Tl6]6– can be understood in terms of the Jahn–Teller theorem. According to magnetic measurements all title compounds are diamagnetic.  相似文献   

9.
The new thallium(I) salts, Tl2H2P2O6 ( 1 ) and Tl4P2O6 ( 2 ), were prepared and structurally characterized by single‐crystal X‐ray diffraction. Compound 1 crystallizes in the monoclinic space group P21/c and compound 2 in the orthorhombic space group Pbca. Both structures feature channels occupied by the lone electron pairs of Tl+ cations. Furthermore, those are built up by discrete [H2P2O6]2– for compound 1 and [P2O6]4– units for 2 in staggered conformation for the P2O6 skeleton and the thallium cations. In Tl2H2P2O6 ( 1 ) the hydrogen atoms of the [H2P2O6]2– ion are in a “trans‐trans” conformation. The O ··· H–O hydrogen bonds between the [H2P2O6]2– groups consolidate the structure 1 into a three‐dimensional network. FT‐IR/FIR and FT‐Raman spectra of the crystalline title compounds were recorded and a complete assignment for the P2O64– modes is proposed. The phase purity of 1 was verified by powder diffraction measurements.  相似文献   

10.
The crystal structure of [Tl2(sac)2(H2O)]n (sac = saccharinate anion) has been solved using single crystal X‐ray diffraction. It crystallizes in the triclinic space group P 1 with Z = 2 and presents a polymeric structure formed by two saccharinate anions, one water molecule and two chemically different TlI cations, one 8‐coordinate and the other 5‐coordinate. Saccharinate shows an unprecedented coordination behavior as it acts as chelating ligand through its N and carbonyl O atoms with the N atom interacting simultaneously with both metal centers, and participation of sulphonyl oxygen atoms in bonding. The most important features of the IR spectrum of the complex are discussed on the basis of the structural peculiarities.  相似文献   

11.
The crystal structure of Tl2Te, dithallium telluride, has been determined by single‐crystal X‐ray diffraction. The analysis of the structure shows that this compound is the first known representative of a new crystal structure type. The structural relationship with the related Tl5Te3 phase is discussed.  相似文献   

12.
Slow cooling of melts composed of TlCl and BiCl3 allows for the isolation of the compounds Tl3BiCl6 ( 1 ) and TlBi2Cl7 ( 2 ). Compound 1 is formed by sublimation at 480 °C from the black melt of 3 TlCl + 1 BiCl3 as colourless crystals. The crystal structure determination (tetragonal, P42/m) consists of nearly regular octahedral [BiCl6]3– anions and two independent Tl+ cations, which have coordination number 8 in form of a slightly distorted cube and 10 in form of an Edshamar polyhedron, respectively. The structure is not isotypic with the recently reported naturally occurring form of Tl3BiCl6, the mineral steropesite. Compound 2 is obtained from a dark red melt of composition TlCl + 2 BiCl3. On rapid cooling, this melt solidifies to a metastable dark red glass which at ambient temperature crystallises to a light amber crystalline powder within some weeks. The structure of 2 was determined by powder diffraction (triclinic, P\bar{1} ). A distinct lone pair effect is present causing an irregular coordination on the two independent bismuth atoms. Taking Bi–Cl bonds up to 3.5 Å into account, both bismuth atoms gain coordination number seven. 203Tl and 205Tl solid state NMR and XANES spectra on the Bi and Tl‐LIII edges of both glassy and crystalline TlBi2Cl7 show that a close structural similarity exists between both forms. In contrast, the Raman spectra show distinct differences in the bands of the Bi–Cl vibrations region.  相似文献   

13.
Thallium ruthenium oxides, Tl2Ru2O7−δ, with the pyrochlore structure were synthesized under a pressure of 1–5 GPa and 1173 K and characterized by resistivity, magnetization, and TOF neutron-diffraction measurements. The oxygen vacancy,δ, varied with the synthesis conditions and significantly affected their electrical properties. The pyrochlores synthesized at high pressure and atmospheric pressure are classified into four groups which depend on their oxygen nonstoichiometry. (i) Nonstoichiometric Tl2Ru2O6.71shows a metallic conductivity with almost temperature-independent magnetization. (ii) Stoichiometric Tl2Ru2O7synthesized under high oxygen pressure using KClO4shows a metallic–semiconducting transition at 120 K with magnetization anomalies at 120 and 40 K. (iii) Slightly nonstoichiometric Tl2Ru2O6.96shows spin-glass-like behavior around 40 K accompanying a resistivity increase at the transition. (iv) Tl2Ru2O7synthesized at 773 K and atmospheric pressure is semiconducting with magnetization anomalies at 120 and 40 K. The change from the metallic to semiconducting state is discussed from the viewpoint of structure changes.  相似文献   

14.
During the reaction of an aqueous solution of (H3O)2[B12H12] with Tl2CO3 anhydrous thallium(I) dodecahydro‐closo‐dodecaborate Tl2[B12H12] is obtained as colorless, spherical single crystals. It crystallizes in the cubic system with the centrosymmetric space group Fm$\bar{3}$ (a = 1074.23(8) pm, Z = 4) in an anti‐CaF2 type structure. Four quasi‐icosahedral [B12H12]2– anions (d(B–B) = 180–181 pm, d(B–H) = 111 pm) exhibit coordinative influence on each Tl+ cation and provide a twelvefold coordination in the shape of a cuboctahedron (d(Tl–H) = 296 pm). There is no observable stereochemical activity of the non‐bonding electron pairs (6s2 lone pairs) at the Tl+ cations. By neutralization of an aqueous solution of the acid (H3O)2[B12H12] with PbCO3 and after isothermic evaporation colorless, plate‐like single crystals of lead(II) dodecahydro‐closo‐dodecaborate hexahydrate Pb(H2O)3[B12H12] · 3H2O can be isolated. This compound crystallizes orthorhombically with the non‐centrosymmetric space group Pna21 (a = 1839.08(9), b = 1166.52(6), c = 717.27(4) pm, Z = 4). The crystal structure of Pb(H2O)3[B12H12] · 3H2O is characterized as a layer‐like arrangement. The Pb2+ cations are coordinated in first sphere by only three oxygen atoms from water molecules (d(Pb–O) = 247–248 pm). But a coordinative influence of the [B12H12]2– anions (d(B–B) = 173–181 pm, d(B–H) = 93–122 pm) on lead has to be stated, too, as three hydrogen atoms from three different hydroborate anions are attached to the Pb2+ cations (d(Pb–H) = 258–270 pm) completing their first‐sphere coordination number to six. These three oxygen and three hydrogen ligands are arranged as quite irregular polyhedron leaving enough space for a stereochemical lone‐pair activity (6sp) at each Pb2+ cation. Since additional intercalating water of hydration is present as well, both classical H–Oδ ··· +δH–O‐ and unconventional B–Hδ ··· +δH–O hydrogen bonds play a significant role in the stabilization of the entire crystal structure.  相似文献   

15.
在Tl2SO4+Na2SO4+二(2-乙基己基)二硫代磷酸+n-C8H18+水体系中, 测定了0.1-2.0 mol•kg1离子强度范围内Tl 的平衡摩尔浓度。水相中电解质Na2SO4 控制溶液离子强度, 有机相中萃取剂取278.15 K至303.15 K范围内的恒定摩尔浓度。通过外推法和多项式近似得到了不同温度下的标准萃取常数K0,计算了萃取过程的热动力学量。  相似文献   

16.
TlTaS3 was prepared by applying a sequence of two melting processes with mixtures of Tl2S, Ta, and S having different molar metal to sulphur ratios. TlTaS3 crystallises in space group Pnma with a = 9.228(3)Å, b = 3.5030(6)Å, c = 14.209(3)Å, V = 459.3(2)Å3, Z = 4. The structure is closely related to the NH4CdCl3‐type. Characteristic features of the structure are chains of edge‐sharing [Ta(+5)S4S2/2]2 double octahedra running along [010]. These columns are linked by Tl+ ions. The Tl+ ion is surrounded by eight S2— anions to form a distorted bi‐capped trigonal prism. The Tl+ ions are shifted from the centre of the trigonal prism toward one of the rectangular faces. This is discussed in context with other isostructural compounds. TlTaS3 is a semiconductor. The electronic structure is discussed on the base of band structure calculations performed within the framework of density functional theory.  相似文献   

17.
This report deals with the synthesis, characterization, and crystal structure of a heteropentanuclear CuII3TlI2 compound [(CuIIL)3TlI2](NO3)2 (1), where H2L=N,N′-ethylenebis(3-ethoxysalicylaldimine). This compound crystallizes in the monoclinic crystal system within space group C2/c. Each of the two symmetry related thallium(I) centers is located between a terminal and a common, central [CuIIL] by forming bonds with four phenoxo and three ethoxy oxygens. The three [CuIIL] moieties are parallel and hence 1 is a triple-decker system. Neighboring triple-decker moieties are interlinked by π?π stacking interaction and weak hydrogen bonds to generate 3-D self-assembly in 1. Salient features in the composition and structure of the title compound are discussed; the title compound is the first example of a thallium(I) system in imino-phenolate Schiff base family.  相似文献   

18.
From thallium(III) bromide solution, the unsubstituted pyridinium cation yields a complex ( 1 ) with the [Tl2Br9]3? anionic stoichiometry. The Raman spectrum and single‐crystal X‐ray crystallographic analysis showed that the salt contains independent [TlBr4]? and bromide anions. A variety of mono‐ and disubstituted pyridinium cations were also employed in similar syntheses. The 2‐bromopyridinium cation gave a salt 2 with [TlBr5]2? stoichiometry, but the crystal structure revealed very weakly interacting [TlBr4]? and bromide anions with a Tl ???Br? distance of 4.1545(6) Å. The 2‐(ammoniomethyl)pyridinium and 2‐amino‐4‐methylpyridinium cations yielded complexes containing [TlBr5]2? ( 3 ) and [TlBr4]? ( 4 ) species, respectively, which were confirmed by Raman spectroscopy and X‐ray crystallographic analyses. For 3 , the [TlBr5]2? anion has a highly distorted trigonal bipyramidal conformation with one long axial Tl ???Br bond of 3.400(2) Å. Microanalytical results in conjunction with Raman spectra from a further five salts confirmed that they all contain the simple [TlBr4]? anion. N? H ???Br Hydrogen bonds clearly influence the nature of the anionic species obtained in these systems.  相似文献   

19.
The title compound, bis(dimethyl sulfoxide)triiodo­thallium(III), [TlI3(C2H6OS)2], was crystallized from equimolar amounts of TlII and I2 in a dimethyl sulfoxide (DMSO) solution. After the initial redox reaction, the thallium(III)–iodo complex forms and precipitates as a DMSO solvate. In the crystal structure, Tl is surrounded by three iodide ligands in the equatorial plane and two O‐coordinated DMSO mol­ecules in the axial positions, forming a slightly distorted trigonal bipyramid. The complex lies on a twofold rotation axis, making the DMSO mol­ecules and two of the I atoms crystallographically equivalent.  相似文献   

20.
Isotypic imidonitridophosphates MH4P6N12 (M=Mg, Ca) have been synthesized by high‐pressure/high‐temperature reactions at 8 GPa and 1000 °C starting from stoichiometric amounts of the respective alkaline‐earth metal nitrides, P3N5, and amorphous HPN2. Both compounds form colorless transparent platelet crystals. The crystal structures have been solved and refined from single‐crystal X‐ray diffraction data. Rietveld refinement confirmed the accuracy of the structure determination. In order to quantify the amounts of H atoms in the respective compounds, quantitative solid‐state 1H NMR measurements were carried out. EDX spectroscopy confirmed the chemical compositions. FTIR spectra confirmed the presence of NH groups in both structures. The crystal structures reveal an unprecedented layered tetrahedral arrangement, built up from all‐side vertex‐sharing PN4 tetrahedra with condensed dreier and sechser rings. The resulting layers are separated by metal atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号