首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new flavonoid, Jusanin, (1) has been isolated from the aerial parts of Artemisia commutata. The chemical structure of Jusanin has been elucidated using 1D, 2D NMR, and HR-Ms spectroscopic methods to be 5,2′,4′-trihydroxy-6,7,5′-trimethoxyflavone. Being new in nature, the inhibition potential of 1 has been estimated against SARS-CoV-2 using different in silico techniques. Firstly, molecular similarity and fingerprint studies have been conducted for Jusanin against co-crystallized ligands of eight different SARS-CoV-2 essential proteins. The studies indicated the similarity between 1 and X77, the co-crystallized ligand SARS-CoV-2 main protease (PDB ID: 6W63). To confirm the obtained results, a DFT study was carried out and indicated the similarity of (total energy, HOMO, LUMO, gap energy, and dipole moment) between 1 and X77. Accordingly, molecular docking studies of 1 against the target enzyme have been achieved and showed that 1 bonded correctly in the protein’s active site with a binding energy of −19.54 Kcal/mol. Additionally, in silico ADMET in addition to the toxicity evaluation of Jusanin against seven models have been preceded and indicated the general safety and the likeness of Jusanin to be a drug. Finally, molecular dynamics simulation studies were applied to investigate the dynamic behavior of the Mpro-Jusanin complex and confirmed the correct binding at 100 ns. In addition to 1, three other metabolites have been isolated and identified to be сapillartemisin A (2), methyl-3-[S-hydroxyprenyl]-cumarate (3), and β-sitosterol (4).  相似文献   

2.
This study demonstrates the inhibitory effect of 42 pyrimidonic pharmaceuticals (PPs) on the 3-chymotrypsin-like protease of SARS-CoV-2 (3CLpro) through molecular docking, molecular dynamics simulations, and free binding energies by means of molecular mechanics–Poisson Boltzmann surface area (MM-PBSA) and molecular mechanics–generalized Born surface area (MM-GBSA). Of these tested PPs, 11 drugs approved by the US Food and Drug Administration showed an excellent binding affinity to the catalytic residues of 3CLpro of His41 and Cys145: uracil mustard, cytarabine, floxuridine, trifluridine, stavudine, lamivudine, zalcitabine, telbivudine, tipiracil, citicoline, and uridine triacetate. Their percentage of residues involved in binding at the active sites ranged from 56 to 100, and their binding affinities were in the range from −4.6 ± 0.14 to −7.0 ± 0.19 kcal/mol. The molecular dynamics as determined by a 200 ns simulation run of solvated docked complexes confirmed the stability of PP conformations that bound to the catalytic dyad and the active sites of 3CLpro. The free energy of binding also demonstrates the stability of the PP–3CLpro complexes. Citicoline and uridine triacetate showed free binding energies of −25.53 and −7.07 kcal/mol, respectively. Therefore, I recommend that they be repurposed for the fight against COVID-19, following proper experimental and clinical validation.  相似文献   

3.
A series of novel naphthopyrano[2,3-d]pyrimidin-11(12H)-one containing isoxazole nucleus 4 was synthesized under microwave irradiation and classical conditions in moderate to excellent yields upon 1,3-dipolar cycloaddition reaction using various arylnitrile oxides under copper(I) catalyst. A one-pot, three-component reaction, N-propargylation and Dimroth rearrangement were used as the key steps for the preparation of the dipolarophiles3. The structures of the synthesized compounds were established by 1H NMR, 13C NMR and HRMS-ES means. The present study aims to also predict the theoretical assembly of the COVID-19 protease (SARS-CoV-2 Mpro) and to discover in advance whether this protein can be targeted by the compounds 4a–1 and thus be synthesized. The docking scores of these compounds were compared to those of the co-crystallized native ligand inhibitor (N3) which was used as a reference standard. The results showed that all the synthesized compounds (4a–l) gave interesting binding scores compared to those of N3 inhibitor. It was found that compounds 4a, 4e and 4i achieved greatly similar binding scores and modes of interaction than N3, indicating promising affinity towards SARS-CoV-2 Mpro. On the other hand, the derivatives 4k, 4h and 4j showed binding energy scores (−8.9, −8.5 and −8.4 kcal/mol, respectively) higher than the Mpro N3 inhibitor (−7.0 kcal/mol), revealing, in their turn, a strong interaction with the target protease, although their interactions were not entirely comparable to that of the reference N3.  相似文献   

4.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent for the COVID-19 pandemic, which generated more than 1.82 million deaths in 2020 alone, in addition to 83.8 million infections. Currently, there is no antiviral medication to treat COVID-19. In the search for drug leads, marine-derived metabolites are reported here as prospective SARS-CoV-2 inhibitors. Two hundred and twenty-seven terpene natural products isolated from the biodiverse Red-Sea ecosystem were screened for inhibitor activity against the SARS-CoV-2 main protease (Mpro) using molecular docking and molecular dynamics (MD) simulations combined with molecular mechanics/generalized Born surface area binding energy calculations. On the basis of in silico analyses, six terpenes demonstrated high potency as Mpro inhibitors with ΔGbinding ≤ −40.0 kcal/mol. The stability and binding affinity of the most potent metabolite, erylosides B, were compared to the human immunodeficiency virus protease inhibitor, lopinavir. Erylosides B showed greater binding affinity towards SARS-CoV-2 Mpro than lopinavir over 100 ns with ΔGbinding values of −51.9 vs. −33.6 kcal/mol, respectively. Protein–protein interactions indicate that erylosides B biochemical signaling shares gene components that mediate severe acute respiratory syndrome diseases, including the cytokine- and immune-signaling components BCL2L1, IL2, and PRKC. Pathway enrichment analysis and Boolean network modeling were performed towards a deep dissection and mining of the erylosides B target–function interactions. The current study identifies erylosides B as a promising anti-COVID-19 drug lead that warrants further in vitro and in vivo testing.  相似文献   

5.
Two rare 2-phenoxychromone derivatives, 6-demethoxy-4`-O-capillarsine (1) and tenuflorin C (2), were isolated from the areal parts of Artemisia commutata and A. glauca, respectively, for the first time. Being rare in nature, the inhibition potentialities of 1 and 2 against SARS-CoV-2 was investigated using multistage in silico techniques. At first, molecular similarity and fingerprint studies were conducted for 1 and 2 against co-crystallized ligands of eight different COVID-19 enzymes. The carried-out studies indicated the similarity of 1 and 2 with TTT, the co-crystallized ligand of COVID-19 Papain-Like Protease (PLP), (PDB ID: 3E9S). Therefore, molecular docking studies of 1 and 2 against the PLP were carried out and revealed correct binding inside the active site exhibiting binding energies of −18.86 and −18.37 Kcal/mol, respectively. Further, in silico ADMET in addition to toxicity evaluation of 1 and 2 against seven models indicated the general safety and the likeness of 1 and 2 to be drugs. Lastly, to authenticate the binding and to investigate the thermodynamic characters, molecular dynamics (MD) simulation studies were conducted on 1 and PLP.  相似文献   

6.
There is currently a global COVID-19 pandemic caused by the severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2) and its variants. This highly contagious viral disease continues to pose a major health threat global. The discovery of vaccinations is not enough to prevent their spread and dire consequences. To take advantage of the current drugs and isolated compounds, and immediately qualifying approach is required. The aim of our research is evaluation the potency for natural antiviral compounds against the SARS CoV-2 Mpro. Molecular docking of four phenolic compounds from Phillyrea angustifolia leaves with SARS-CoV-2 Mpro has been conducted. Similarly, the stability of selected ligand–protein interactions has been determined using MD simulations. Moreover, the quantitative structure–activity relationship (QSAR), MMGBSA binding energies, pharmacokinetics, and drug-likeness predictions for selected phenolic have been reported. The selected phenolic compounds (Luteolin-7-O-glucoside, Apigenin-7-O-glucoside, Demethyl-oleuropein, and Oleuropein aglycone) revealed strong binding contacts in the two active pockets of a target protein of SARS-CoV-2 Mpro with the docking scores and highest binding energies with a binding energy of ?8.2 kcal/mol; ?7.8 kcal/mol; ?7.2 kcal/mol and ?7.0 kcal/mol respectively. Both Demethyloleoeuropein and Oleuropein aglycone can interact with residues His41 and Cys145 (catalytic dyad) and other amino acids of the binding pocket of Mpro. According to QSAR, studies on pharmacokinetics and drug-like properties suggested that oleuropein aglycone could be the best inhibitor of SARS-CoV-2 for new drug design and development. Further in vivo, in vitro, and clinical studies are highly needed to examine the potential of these phenolic compounds in the fight against COVID-19.  相似文献   

7.
In the search for new anti-HIV-1 agents, two forms of phenylamino-phenoxy-quinoline derivatives have been synthesized, namely, 2-phenylamino-4-phenoxy-quinoline and 6-phenylamino-4-phenoxy-quinoline. In this study, the binding interactions of phenylamino-phenoxy-quinoline derivatives and six commercially available drugs (hydroxychloroquine, ritonavir, remdesivir, S-217622, N3, and PF-07321332) with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro) were investigated using molecular docking and the ONIOM method. The molecular docking showed the hydrogen bonding and hydrophobic interactions of all the compounds in the pocket of SARS-CoV-2 main protease (Mpro), which plays an important role for the division and proliferation of the virus into the cell. The binding free energy values between the ligands and Mpro ranged from −7.06 to −10.61 kcal/mol. The molecular docking and ONIOM results suggested that 4-(2′,6′-dimethyl-4′-cyanophenoxy)-2-(4″-cyanophenyl)-aminoquinoline and 4-(4′-cyanophenoxy)-2-(4″-cyanophenyl)-aminoquinoline have low binding energy values and appropriate molecular properties; moreover, both compounds could bind to Mpro via hydrogen bonding and Pi-Pi stacking interactions with amino acid residues, namely, HIS41, GLU166, and GLN192. These amino acids are related to the proteolytic cleavage process of the catalytic triad mechanisms. Therefore, this study provides important information for further studies on synthetic quinoline derivatives as antiviral candidates in the treatment of SARS-CoV-2.  相似文献   

8.
9.
The emergence of COVID-19 continues to pose severe threats to global public health. The pandemic has infected over 171 million people and claimed more than 3.5 million lives to date. We investigated the binding potential of antiviral cyanobacterial proteins including cyanovirin-N, scytovirin and phycocyanin with fundamental proteins involved in attachment and replication of SARS-CoV-2. Cyanovirin-N displayed the highest binding energy scores (−16.8 ± 0.02 kcal/mol, −12.3 ± 0.03 kcal/mol and −13.4 ± 0.02 kcal/mol, respectively) with the spike protein, the main protease (Mpro) and the papainlike protease (PLpro) of SARS-CoV-2. Cyanovirin-N was observed to interact with the crucial residues involved in the attachment of the human ACE2 receptor. Analysis of the binding affinities calculated employing the molecular mechanics-Poisson–Boltzmann surface area (MM-PBSA) approach revealed that all forms of energy, except the polar solvation energy, favourably contributed to the interactions of cyanovirin-N with the viral proteins. With particular emphasis on cyanovirin-N, the current work presents evidence for the potential inhibition of SARS-CoV-2 by cyanobacterial proteins, and offers the opportunity for in vitro and in vivo experiments to deploy the cyanobacterial proteins as valuable therapeutics against COVID-19.  相似文献   

10.
The urease enzyme has been an important target for the discovery of effective pharmacological and agricultural products. Thirteen regio-selectively alkylated benzimidazole-2-thione derivatives have been designed to carry the essential features of urease inhibitors. The urease enzyme was isolated from Helicobacter pylori as a recombinant urease utilizing the His-tag method. The isolated enzyme was purified and characterized using chromatographic and FPLC techniques showing a maximal activity of 200 mg/mL. Additionally, the commercial Jack bean urease was purchased and included in this study for comparative and mechanistic investigations. The designed compounds were synthesized and screened for their inhibitory activity against the two ureases. Compound 2 inhibited H. pylori and Jack bean ureases with IC50 values of 0.11; and 0.26 mM; respectively. While compound 5 showed IC50 values of 0.01; and 0.29 mM; respectively. Compounds 2 and 5 were docked against Helicobacter pylori urease (PDB ID: 1E9Y; resolution: 3.00 Å) and exhibited correct binding modes with free energy (ΔG) values of −9.74 and −13.82 kcal mol−1; respectively. Further; the in silico ADMET and toxicity properties of 2 and 5 indicated their general safeties and likeness to be used as drugs. Finally, the compounds’ safety was authenticated by an in vitro cytotoxicity assay against fibroblast cells.  相似文献   

11.
A novel series of 1-aryl-N-[4-phenyl-5-(arylazo)thiazol-2-yl)methanimines has been synthesized via the condensation of 2-amino-4-phenyl-5-arylazothiazole with various aromatic aldehydes. The synthesized imines were characterized by spectroscopic techniques, namely 1H and 13C-NMR, FTIR, MS, and Elemental Analysis. A molecular comparative docking study for 3a–f was calculated, with reference to two approved drugs, Molnupiravir and Remdesivir, using 7BQY (Mpro; PDB code 7BQY; resolution: 1.7 A°) under identical conditions. The binding scores against 7BQY were in the range of −7.7 to −8.7 kcal/mol for 3a–f. The high scores of the compounds indicated an enhanced binding affinity of the molecules to the receptor. This is due to the hydrophobic interactions and multi-hydrogen bonds between 3a–f ligands and the receptor’s active amino acid residues. The main aim of using in silco molecular docking was to rank 3a–f with respect to the approved drugs, Molnupiravir and Remdesivir, using free energy methods as greener pastures. A further interesting comparison presented the laydown of the ligands before and after molecular docking. These results and other supporting statistical analyses suggested that ligands 3a–f deserve further investigation in the context of potential therapeutic agents for COVID-19. Free-cost, PASS, SwissADME, and Way2drug were used in this research paper to determine the possible biological activities and cytotoxicity of 3a–f.  相似文献   

12.
In the current study, a 2D similarity/docking-based study was used to predict the potential binding modes of icotinib, almonertinib, and olmutinib into EGFR. The similarity search of icotinib, almonertinib, and olmutinib against a database of 154 EGFR ligands revealed the highest similarity scores with erlotinib (0.9333), osimertinib (0.9487), and WZ4003 (0.8421), respectively. In addition, the results of the docking study of the three drugs into EGFR revealed high binding free energies (ΔGb = −6.32 to −8.42 kcal/mol) compared to the co-crystallized ligands (ΔGb = −7.03 to −8.07 kcal/mol). Analysis of the top-scoring poses of the three drugs was done to identify their potential binding modes. The distances between Cys797 in EGFR and the Michael acceptor sites in almonertinib and olmutinib were determined. In conclusion, the results could provide insights into the potential binding characteristics of the three drugs into EGFR which could help in the design of new more potent analogs.  相似文献   

13.
Tyrosinases belong to the functional copper-containing proteins family, and their structure contains two copper atoms, in the active site, which are coordinated by three histidine residues. The biosynthesis of melanin in melanocytes has two stages depending on the actions of the natural substrates L-DOPA and L-tyrosine. The dysregulation of tyrosinase is involved in skin cancer initiation. In the present study, using molecular modeling tools, we analyzed the inhibition activity of tyrosinase activity using kojic acid (KA) derivatives designed from aromatic aldehydes and malononitrile. All derivatives showed conformational affinity to the enzyme active site, and a favorable distance to chelate the copper ion, which is essential for enzyme function. Molecular dynamics simulations revealed that the derivatives formed promising complexes, presenting stable conformations with deviations between 0.2 and 0.35 Å. In addition, the investigated KA derivatives showed favorable binding free energies. The most stable KA derivatives showed the following binding free energies: −17.65 kcal mol−1 (D6), −18.07 kcal mol−1 (D2), −18.13 (D5) kcal mol−1, and −10.31 kcal mol−1 (D4). Our results suggest that these derivatives could be potent competitive inhibitors of the natural substrates of L-DOPA (−12.84 kcal mol−1) and L-tyrosine (−9.04 kcal mol−1) in melanogenesis.  相似文献   

14.
Compounds derived from plants have several anticancer properties. In the current study, one guaiane-type sesquiterpene dimer, vieloplain F, isolated from Xylopia vielana species, was tested against B-Raf kinase protein (PDB: 3OG7), a potent target for melanoma. A comprehensive in silico analysis was conducted in this research to understand the pharmacological properties of a compound encompassing absorption, distribution, metabolism, excretion, and toxicity (ADMET), bioactivity score predictions, and molecular docking. During ADMET estimations, the FDA-approved medicine vemurafenib was hepatotoxic, cytochrome-inhibiting, and non-cardiotoxic compared to the vieloplain F. The bioactivity scores of vieloplain F were active for nuclear receptor ligand and enzyme inhibitor. During molecular docking experiments, the compound vieloplain F has displayed a higher binding potential with −11.8 kcal/mol energy than control vemurafenib −10.2 kcal/mol. It was shown that intermolecular interaction with the B-Raf complex and the enzyme’s active gorge through hydrogen bonding and hydrophobic contacts was very accurate for the compound vieloplain F, which was then examined for MD simulations. In addition, simulations using MM-GBSA showed that vieloplain F had the greatest propensity to bind to active site residues. The vieloplain F has predominantly represented a more robust profile compared to control vemurafenib, and these results opened the road for vieloplain F for its utilization as a plausible anti-melanoma agent and anticancer drug in the next era.  相似文献   

15.
The performance of 23 density functionals, including one LDA, four GGAs, three meta-GGAs, three hybrid GGAs, eight hybrid meta-GGAs, and ten double-hybrid functionals, was investigated for the computation of activation energies of various covalent main-group single bonds by four catalysts: Pd, PdCl, PdCl2, and Ni (all in the singlet state). A reactant complex, the barrier, and reaction energy were considered, leading to 164 energy data points for statistical analysis. Extended Gaussian AO basis sets were used in all calculations. The best functional for the complete benchmark set relative to estimated CCSD(T)/CBS reference data is PBE0-D3, with an MAD value of 1.1 kcal mol−1 followed by PW6B95-D3, the double hybrid PWPB95-D3, and B3LYP-D3 (1.9 kcal mol−1 each). The other tested hybrid meta-GGAs perform less well (M06-HF: 7.0 kcal mol−1; M06-2X: 6.3 kcal mol−1; M06: 4.9 kcal mol−1) for the investigated reactions. In the Ni case, some double hybrids show larger errors due to partial breakdown of the perturbative treatment for the correlation energy in cases with difficult electronic structures (partial multi-reference character). Only double hybrids either with very low amounts of perturbative correlation (e.g., PBE0-DH) or that use the opposite-spin correlation component only (e.g., PWPB95) seem to be more robust. We also investigated the effect of the D3 dispersion correction. While the barriers are not affected by this correction, significant and mostly positive results were observed for reaction energies. Furthermore, six very recently proposed double-hybrid functionals were analyzed regarding the influence of the amount of Fock exchange as well as the type of perturbative correlation treatment. According to these results, double hybrids with <50–60 % of exact exchange and ∼30 % perturbative correlation perform best.  相似文献   

16.
The experimentally motivated question of the acetylene bromoboration mechanism was addressed in order to suggest possible radical isomerization pathways for the syn-adduct. Addition–elimination mechanisms starting with a bromine radical attack at the “bromine end” or the “boron end” of the C=C bond were considered. Dispersion-corrected DFT and MP2 methods with the SMD solvation model were employed using three all-electron bases as well as the ECP28MWB ansatz. The rate-determining, elimination step had a higher activation energy (12 kcal mol−1) in case of the “bromine end” attack due to intermediate stabilization at both the MP2 and DFT levels. In case of the “boron end” attack, two modes of C–C bond rotation were followed and striking differences in MP2 vs. DFT potential energy surfaces were observed. Employing MP2, addition was followed by either a 180° rotation through an eclipsed conformation of vicinal bromine atoms or by an opposite rotation avoiding that conformation, with 5 kcal mol−1 of elimination activation energy. Within B3LYP, the addition and rotation proceeded simultaneously, with a 9 (7) kcal mol−1 barrier for rotation involving (avoiding) eclipsed conformation of vicinal bromines. For weakly bound complexes, ZPE corrections with MP2 revealed significant artifacts when diffuse bases were included, which must be considered in the Gibbs free energy profile interpretation.  相似文献   

17.
The specificity of inhibition by 6,6′-dihydroxythiobinupharidine (DTBN) on cysteine proteases was demonstrated in this work. There were differences in the extent of inhibition, reflecting active site structural-steric and biochemical differences. Cathepsin S (IC50 = 3.2 μM) was most sensitive to inhibition by DTBN compared to Cathepsin B, L and papain (IC50 = 1359.4, 13.2 and 70.4 μM respectively). DTBN is inactive for the inhibition of Mpro of SARS-CoV-2. Docking simulations suggested a mechanism of interaction that was further supported by the biochemical results. In the docking results, it was shown that the cysteine sulphur of Cathepsin S, L and B was in close proximity to the DTBN thiaspirane ring, potentially forming the necessary conditions for a nucleophilic attack to form a disulfide bond. Covalent docking and molecular dynamic simulations were performed to validate disulfide bond formation and to determine the stability of Cathepsins-DTBN complexes, respectively. The lack of reactivity of DTBN against SARS-CoV-2 Mpro was attributed to a mismatch of the binding conformation of DTBN to the catalytic binding site of Mpro. Thus, gradations in reactivity among the tested Cathepsins may be conducive for a mechanism-based search for derivatives of nupharidine against COVID-19. This could be an alternative strategy to the large-scale screening of electrophilic inhibitors.  相似文献   

18.
19.
There have been more than 150 million confirmed cases of SARS-CoV-2 since the beginning of the pandemic in 2019. By June 2021, the mortality from such infections approached 3.9 million people. Despite the availability of a number of vaccines which provide protection against this virus, the evolution of new viral variants, inconsistent availability of the vaccine around the world, and vaccine hesitancy, in some countries, makes it unreasonable to rely on mass vaccination alone to combat this pandemic. Consequently, much effort is directed to identifying potential antiviral treatments. Marine brominated tyrosine alkaloids are recognized to have antiviral potential. We test here the antiviral capacity of fourteen marine brominated tyrosine alkaloids against five different target proteins from SARS-CoV-2, including main protease (Mpro) (PDB ID: 6lu7), spike glycoprotein (PDB ID: 6VYB), nucleocapsid phosphoprotein (PDB ID: 6VYO), membrane glycoprotein (PDB ID: 6M17), and non-structural protein 10 (nsp10) (PDB ID: 6W4H). These marine alkaloids, particularly the hexabrominated compound, fistularin-3, shows promising docking interactions with predicted binding affinities (S-score = −7.78, −7.65, −6.39, −6.28, −8.84 Kcal/mol) for the main protease (Mpro) (PDB ID: 6lu7), spike glycoprotein (PDB ID: 6VYB), nucleocapsid phosphoprotein (PDB ID: 6VYO), membrane glycoprotein (PDB ID: 6M17), and non-structural protein 10 (nsp10) (PDB ID: 6W4H), respectively, where it forms better interactions with the protein pockets than the native interaction. It also shows promising molecular dynamics, pharmacokinetics, and toxicity profiles. As such, further exploration of the antiviral properties of fistularin-3 against SARS-CoV-2 is merited.  相似文献   

20.
The COVID-19 outbreak has rapidly spread on a global scale, affecting the economy and public health systems throughout the world. In recent years, peptide-based therapeutics have been widely studied and developed to treat infectious diseases, including viral infections. Herein, the antiviral effects of the lysine linked dimer des-Cys11, Lys12,Lys13-(pBthTX-I)2K ((pBthTX-I)2K)) and derivatives against SARS-CoV-2 are reported. The lead peptide (pBthTX-I)2K and derivatives showed attractive inhibitory activities against SARS-CoV-2 (EC50 = 28–65 µM) and mostly low cytotoxic effect (CC50 > 100 µM). To shed light on the mechanism of action underlying the peptides’ antiviral activity, the Main Protease (Mpro) and Papain-Like protease (PLpro) inhibitory activities of the peptides were assessed. The synthetic peptides showed PLpro inhibition potencies (IC50s = 1.0–3.5 µM) and binding affinities (Kd = 0.9–7 µM) at the low micromolar range but poor inhibitory activity against Mpro (IC50 > 10 µM). The modeled binding mode of a representative peptide of the series indicated that the compound blocked the entry of the PLpro substrate toward the protease catalytic cleft. Our findings indicated that non-toxic dimeric peptides derived from the Bothropstoxin-I have attractive cellular and enzymatic inhibitory activities, thereby suggesting that they are promising prototypes for the discovery and development of new drugs against SARS-CoV-2 infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号