首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The title salt, C3H8NO2+·C2HO4, formed between l ‐cysteine and oxalic acid, was studied as part of a comparison of the structures and properties of pure amino acids and their cocrystals. The structure of the title salt is very different from that formed by oxalic acid and equivalent amounts of d ‐ and l ‐cysteine molecules. The asymmetric unit contains an l ‐cysteinium cation and a semioxalate anion. The oxalate anion is only singly deprotonated, in contrast with the double deprotonation in the crystal structure of bis(dl ‐cysteinium) oxalate. The oxalate anion is not planar. The conformation of the l ‐cysteinium cation differs from that of the neutral cysteine zwitterion in the monoclinic and orthorhombic polymorphs of l ‐cysteine, but is similar to that of the cysteinium cation in bis(dl ‐cysteinium) oxalate. The structure of the title salt can be described as a three‐dimensional framework formed by ions linked by strong O—H...O and N—H...O and weak S—H...O hydrogen bonds, with channels running along the crystallographic a axis containing the bulky –CH2SH side chains of the cysteinium cations. The cations are only linked through hydrogen bonds via semioxalate anions. There are no direct cation–cation interactions via N—H...O hydrogen bonds between the ammonium and carboxylate groups, or via weaker S—H...S or S—H...O hydrogen bonds.  相似文献   

2.
The title salt, C16H21NOPS+·C12H10OPS, was synthesized from the reaction between 3‐(methylamino)propan‐1‐ol and PPh2(S)Cl in the presence of Et3N. Its structure has been identified using spectroscopic methods and X‐ray analysis. Single crystals were obtained from ethanol by slow evaporation. In the asymmetric unit, a cation–anion pair is formed through an intermolecular N—H...O [N...O = 2.6974 (18) Å] hydrogen bond. The molecules are packed through N—H...O and N—H...S hydrogen bonds in the crystal and these hydrogen bonds are responsible for the high melting point. The P atoms of the anion and cation both have distorted tetrahedral environments.  相似文献   

3.
The title compounds, C8H11NO, (I), and 2C8H12NO+·C4H4O42−, (II), both crystallize in the monoclinic space group P21/c. In the crystal structure of (I), intermolecular O—H...N hydrogen bonds combine the molecules into polymeric chains extending along the c axis. The chains are linked by C—H...π interactions between the methylene H atoms and the pyridine rings into polymeric layers parallel to the ac plane. In the crystal structure of (II), the succinate anion lies on an inversion centre. Its carboxylate groups interact with the 2‐ethyl‐3‐hydroxy‐6‐methylpyridinium cations via intermolecular N—H...O hydrogen bonds with the pyridine ring H atoms and O—H...O hydrogen bonds with the hydroxy H atoms to form polymeric chains, which extend along the [01] direction and comprise R44(18) hydrogen‐bonded ring motifs. These chains are linked to form a three‐dimensional network through nonclassical C—H...O hydrogen bonds between the pyridine ring H atoms and the hydroxy‐group O atoms of neighbouring cations. π–π interactions between the pyridine rings and C—H...π interactions between the methylene H atoms of the succinate anion and the pyridine rings are also present in this network.  相似文献   

4.
The structure of the title compound, C3H8NO2+·C2HO4·H2O, is formed by two chiral counterparts (l ‐ and d ‐alaninium cations), semi‐oxalate anions and water molecules, with a 1:1:1 cation–anion–water ratio. The structure is compared with that of the previously known anhydrous dl ‐alaninium semi‐oxalate [Subha Nandhini, Krishnakumar & Natarajan (2001). Acta Cryst. E 57 , o666–o668] in order to investigate the role of water molecules in the crystal packing. The structure of the hydrate resembles that of anhydrous alaninium semi‐oxalate, with the water molecule incorporated into the general three‐dimensional network of hydrogen bonds where it forms four hydrogen bonds with neighbours disposed tetrahedrally about it. Although the main structural motifs in the hydrate and in the anhydrous form are topologically similar, the incorporation of water molecules in the network results in significant geometric distortion. There are several types of hydrogen bond in the crystal structure of the hydrate, two of which (O—H...O bonds between the semi‐oxalate anions and O—H...O hydrogen bonds between water and alaninium cations) are very short. Such hydrogen bonds between semi‐oxalate anions are also present in the anhydrous form of this compound. Short distances between semi‐oxalate anions in neighbouring chains in the hydrate alternate with longer ones, whereas in the anhydrous structure they are equidistant. Despite the similarity of these compounds, dehydration of the hydrate on storage is not of a single‐crystal to single‐crystal type, but gives a polycrystalline pseudomorph, preserving the crystal habit. This transformation proceeds through the formation of an intermediate compound, presumably a hemihydrate.  相似文献   

5.
The mixed organic–inorganic title salt, C7H18N2O2+·C2HO4·Cl, forms an assembly of ionic components which are stabilized through a series of hydrogen bonds and charge‐assisted intermolecular interactions. The title assembly crystallizes in the monoclinic C2/c space group with Z = 8. The asymmetric unit consists of a 4‐(3‐azaniumylpropyl)morpholin‐4‐ium dication, a hydrogen oxalate counter‐anion and an inorganic chloride counter‐anion. The organic cations and anions are connected through a network of N—H...O, O—H...O and C—H...O hydrogen bonds, forming several intermolecular rings that can be described by the graph‐set notations R33(13), R21(5), R12(5), R21(6), R23(6), R22(8) and R33(9). The 4‐(3‐azaniumylpropyl)morpholin‐4‐ium dications are interconnected through N—H...O hydrogen bonds, forming C(9) chains that run diagonally along the ab face. Furthermore, the hydrogen oxalate anions are interconnected via O—H...O hydrogen bonds, forming head‐to‐tail C(5) chains along the crystallographic b axis. The two types of chains are linked through additional N—H...O and O—H...O hydrogen bonds, and the hydrogen oxalate chains are sandwiched by the 4‐(3‐azaniumylpropyl)morpholin‐4‐ium chains, forming organic layers that are separated by the chloride anions. Finally, the layered three‐dimensional structure is stabilized via intermolecular N—H...Cl and C—H...Cl interactions.  相似文献   

6.
Two chiral counterparts (l ‐ and d ‐cysteinium cations related by an inversion centre) are present in the structure of the title compound, C3H8NO2S+·C2HO4, with a 1:1 cation–anion ratio. The carboxy group of the cysteinium cation is protonated in the trans position relative to the amino group. The crystal structure is built up of double layers, in which dimers of cysteinium cations are connected to each other not directly, but via bridges of twisted semioxalate anions linked to each other via O—H...O hydrogen bonds forming infinite chains. An interesting feature of the crystal structure is the absence of either S—H...S or S—H...O hydrogen bonds.  相似文献   

7.
The asymmetric unit of the title compound, C10H10N22+·2C2HO4, consists of one half of a 4,4′‐bipyridinium cation, which has inversion symmetry, and a hydrogen oxalate anion, in which an intramolecular hydrogen bond exists. The cations and anions are connected by O—H...O, N—H...O and C—H...O hydrogen bonds, forming a two‐dimensional network, whereas π–π stacking interactions involving the 4,4′‐bipyridinium cations lead to the formation of a three‐dimensional supramolecular structure. An unusual deca‐atomic ring is formed between two hydrogen oxalate anions, which are linked side‐to‐side via O—H...O hydrogen‐bonding interactions.  相似文献   

8.
The title compound, C9H13N4O3+·NO3, is the first structurally characterized Schiff base derived from semicarbazide and pyridoxal. Unusually for an unsubstituted semicarbazone, the compound adopts a syn conformation, in which the carbonyl O atom is in a cis disposition relative to the azomethine N atom. This arrangement is supported by a pair of hydrogen bonds between the organic cation and the nitrate anion. The cation is essentially planar, with only a hydroxymethyl O atom deviating significantly from the mean plane of the remaining atoms (r.m.s. deviation of the remaining non‐H atoms = 0.01 Å). The molecules are linked into flat layers by N—H...O and C—H...O hydrogen bonds. O—H...O hydrogen bonds involving the hydroxymethyl group as a donor interconnect the layers into a three‐dimensional structure.  相似文献   

9.
In bis(2‐carboxypyridinium) hexafluorosilicate, 2C6H6NO2+·SiF62−, (I), and bis(2‐carboxyquinolinium) hexafluorosilicate dihydrate, 2C10H8NO2+·SiF62−·2H2O, (II), the Si atoms of the anions reside on crystallographic centres of inversion. Primary inter‐ion interactions in (I) occur via strong N—H...F and O—H...F hydrogen bonds, generating corrugated layers incorporating [SiF6]2− anions as four‐connected net nodes and organic cations as simple links in between. In (II), a set of strong N—H...F, O—H...O and O—H...F hydrogen bonds, involving water molecules, gives a three‐dimensional heterocoordinated rutile‐like framework that integrates [SiF6]2− anions as six‐connected and water molecules as three‐connected nodes. The carboxyl groups of the cation are hydrogen bonded to the water molecule [O...O = 2.5533 (13) Å], while the N—H group supports direct bonding to the anion [N...F = 2.7061 (12) Å].  相似文献   

10.
Two polymorphs of the title compound [systematic name: 1‐(2,4‐dihydroxyphenyl)ethanone], C8H8O3, were investigated. The known structure [designated (I‐M); P21/c, Z = 4; previously investigated at room temperature by Robert, Moore, Eichhorn & Rillema (2007). Acta Cryst. E 63 , o4252] was redetermined at low temperature, and a new form [(I‐O); P212121, Z = 12] was discovered in the same sample. In both forms, the molecules are planar (apart from the methyl H atoms) and they contain intramolecular O—H...O=C hydrogen bonds. In polymorph (I‐M), molecules are linked into chains by a single intermolecular O—H...O hydrogen bond, and the chains are linked into sheets by two C—H...O hydrogen bonds. Three O—H...O hydrogen bonds link the molecules of polymorph (I‐O) into chains and neighbouring chains are connected by one C—H...O interaction to form an offset layer structure. Two weak methyl C—H...O interactions link the layers.  相似文献   

11.
The title compound, 2C14H13N2+·S2O82−·2H2O, is a protonated amine salt which is formed from two rather uncommon ionic species, namely a peroxodisulfate (pds2−) anion, which lies across a crystallographic inversion centre, and a 2,9‐dimethyl‐1,10‐phenanthrolin‐1‐ium (Hdmph+) cation lying in a general position. Each pds2− anion binds to two water molecules through strong water–peroxo O—H...O interactions, giving rise to an unprecedented planar network of hydrogen‐bonded macrocycles which run parallel to (100). The atoms of the large R88(30) rings are provided by four water molecules bridging in fully extended form (...H—O—H...) and four pds2− anions alternately acting as long (...O—S—O—O—S—O...) and short (...O—S—O...) bridges. The Hdmph+ cations, in turn, bind to these units through hydrogen bonds involving their protonated N atoms. In addition, the crystal structure also contains π–π and aromatic–peroxo C—H...O interactions.  相似文献   

12.
The asymmetric unit of the optically resolved title salt, C8H12N+·C4H5O4S, contains a 1‐phenylethanaminium monocation and a thiomalate (3‐carboxy‐2‐sulfanylpropanoate) monoanion. The absolute configurations of the cation and the anion are determined to be S and R, respectively. In the crystal, cation–anion N—H...O hydrogen bonds, together with anion–anion O—H...O and S—H...O hydrogen bonds, construct a two‐dimensional supramolecular sheet parallel to the ab plane. The two‐dimensional sheet is linked with the upper and lower sheets through C—H...π interactions to stack along the c axis.  相似文献   

13.
Single crystals of the anhydrous form of the title compound {systematic name: 1‐[3‐(dimethylcarbamoyl)‐3,3‐diphenylpropyl]‐4‐hydroxy‐4‐(4‐chlorophenyl)piperidin‐1‐ium chloride}, C29H34ClN2O2+·Cl, were obtained by diffusion of acetone into a solution in 2‐propanol. In the structure, N—H...Cl and O—H...Cl hydrogen bonds connect neighbouring molecules and chloride anions to form chains along the c‐axis direction. Neighbouring chains along the b‐axis direction are connected by intermolecular C—H...Cl contacts, defining layers parallel to the (100) planes. The layers are connected by weak intermolecular C—H...Cl interactions only, which may account for the plate‐like shape of the crystals.  相似文献   

14.
In the crystal structure of the title compound, C20H18N2O2S, molecules are linked by bifurcated C—H...O hydrogen‐bond interactions, giving rise to chains whose links are composed of alternating centrosymmetrically disposed pairs of molecules and characterized by R22(10) and R22(20) hydrogen‐bonding motifs. Also, N—H...S hydrogen bonds form infinite zigzag chains along the [010] direction, which exhibit the C(4) motif. Hirshfeld surface and fingerprint plots were used to explore the intermolecular interactions in the crystal structure. This analysis confirms the important role of C—H...O hydrogen bonds in the molecular conformation and in the crystal structure, providing a potentially useful tool for a full understanding of the intermolecular interactions in acylthiourea derivatives.  相似文献   

15.
In the title monohydrated cocrystal, namely 1,3‐diamino‐5‐azaniumyl‐1,3,5‐trideoxy‐cis‐inositol iodide–1,3,5‐triamino‐1,3,5‐trideoxy‐cis‐inositol–water (1/1/1), C6H16N3O3+·I·C6H15N3O3·H2O, the neutral 1,3,5‐triamino‐1,3,5‐trideoxy‐cis‐inositol (taci) molecule and the monoprotonated 1,3‐diamino‐5‐azaniumyl‐1,3,5‐trideoxy‐cis‐inositol cation (Htaci+) both adopt a chair conformation, with the three O atoms in axial and the three N atoms in equatorial positions. The cation, but not the neutral taci unit, exhibits intramolecular O—H...O hydrogen bonding. The entire structure is stabilized by a complex three‐dimensional network of intermolecular hydrogen bonds. The neutral taci entities and the Htaci+ cations are each aligned into chains along [001]. In these chains, two O—H...N interactions generate a ten‐membered ring as the predominant structural motif. The rings consist of vicinal 2‐amino‐1‐hydroxyethylene units of neighbouring molecules, which are paired via centres of inversion. The chains are interconnected into undulating layers parallel to the ac plane, and the layers are further held together by O—H...N hydrogen bonds and additional interactions with the iodide counter‐anions and solvent water molecules.  相似文献   

16.
The title compound, [MnCl2(C12H8N2O2)2], displays a novel supramolecular chain formed by intermolecular O—H...Cl hydrogen bonds and aromatic stacking. The molecule has crystallographically imposed twofold symmetry with the MnII atom on the twofold axis. In the 1,10‐phenanthroline‐5,6‐diol ligand, each H atom of the two hydroxy groups is oriented towards the other hydroxy O atom. Both hydroxy groups form intermolecular O—H...Cl hydrogen bonds with a single Cl atom of an adjacent molecule. These hydrogen bonds connect the molecules via operation of the molecular twofold axis and the centre of inversion of the crystal lattice, forming a doubly‐bridged one‐dimensional structure with Mn atoms as the nodes. Strong aromatic π‐stacking between two antiparallel neighbouring 1,10‐phenanthroline‐5,6‐diol ligands also helps to stabilize the chain.  相似文献   

17.
The structures of the 1:1 hydrated proton‐transfer compounds of isonipecotamide (piperidine‐4‐carboxamide) with oxalic acid, 4‐carbamoylpiperidinium hydrogen oxalate dihydrate, C6H13N2O+·C2HO4·2H2O, (I), and with adipic acid, bis(4‐carbamoylpiperidinium) adipate dihydrate, 2C6H13N2O+·C6H8O42−·2H2O, (II), are three‐dimensional hydrogen‐bonded constructs involving several different types of enlarged water‐bridged cyclic associations. In the structure of (I), the oxalate monoanions give head‐to‐tail carboxylic acid O—H...Ocarboxyl hydrogen‐bonding interactions, forming C(5) chain substructures which extend along a. The isonipecotamide cations also give parallel chain substructures through amide N—H...O hydrogen bonds, the chains being linked across b and down c by alternating water bridges involving both carboxyl and amide O‐atom acceptors and amide and piperidinium N—H...Ocarboxyl hydrogen bonds, generating cyclic R43(10) and R32(11) motifs. In the structure of (II), the asymmetric unit comprises a piperidinium cation, half an adipate dianion, which lies across a crystallographic inversion centre, and a solvent water molecule. In the crystal structure, the two inversion‐related cations are interlinked through the two water molecules, which act as acceptors in dual amide N—H...Owater hydrogen bonds, to give a cyclic R42(8) association which is conjoined with an R44(12) motif. Further N—H...Owater, water O—H...Oamide and piperidinium N—H...Ocarboxyl hydrogen bonds give the overall three‐dimensional structure. The structures reported here further demonstrate the utility of the isonipecotamide cation as a synthon for the generation of stable hydrogen‐bonded structures. The presence of solvent water molecules in these structures is largely responsible for the non‐occurrence of the common hydrogen‐bonded amide–amide dimer, promoting instead various expanded cyclic hydrogen‐bonding motifs.  相似文献   

18.
The title compound, C5H6N+·CF3SO3, was serendipitously crystallized in the chiral space group P43212. The component entities associate into hydrogen‐bonded helical chains, which propagate along the a and b axes of the crystal, with an alternating disposition of the cations and anions along the chain. N—H...O charge‐assisted hydrogen bonds, from each pyridinium cation to two adjacent trifluoromethanesulfonate anions and from every anion to two different cations, direct the formation of the supramolecular chiral arrays. The crystal packing exhibits nonconventional C—H...O and C—H...F hydrogen bonds between the components. The observed structure demonstrates induction of supramolecular chirality by a combination of Coulombic attractions and intermolecular hydrogen bonds.  相似文献   

19.
In the title compound, [Zn(CH3COO)2(C4H8N2S)2]·H2O, the Zn atom is tetrahedrally coordinated in the ZnO2S2 form. N—H?O and O—H?O intramolecular and intermolecular hydrogen bonds are formed by the four N atoms and the water mol­ecule. N—H?O intermolecular hydrogen bonds and C—H?S and C—H?O intermolecular interactions interconnect columns formed by the mol­ecules into layers. Adjacent layers are then linked by other N—H?O and O—H?O intermolecular hydrogen bonds to form a three‐dimensional framework throughout the structure. The orientations of the acetate planes are such that the Zn atom lies within them.  相似文献   

20.
The asymmetric unit of the title compound [systematic name: 4‐amino‐2‐oxo‐2,3‐dihydropyrimidin‐1‐ium 1‐hydroxy‐2‐(1H,3H‐imidazol‐3‐ium‐1‐yl)ethylidenediphosphonate trihydrate], C4H6N3O+·C5H9N2O7P2·3H2O, contains one cytosinium cation, one zoledronate anion and three water molecules. The zoledronate anion has a zwitterionic character, in which each phosphonate group is singly deprotonated and an imidazole N atom is protonated. Furthermore, proton transfer takes place from one of the phosphonic acid groups of the zoledronate anion to one of the N atoms of the cytosinium cation. The cytosinium cation forms a C(6) chain, while the zoledronate anion forms a rectangular‐shaped centrosymmetric dimer through N—H...O hydrogen bonds. The cations and anions are held together by N—H...O and O—H...O hydrogen bonds to form a one‐dimensional polymeric tape. The three water molecules play a crucial role in hydrogen bonding, resulting in a three‐dimensional hydrogen‐bonded network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号