首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Why Is CO2 so soluble in imidazolium-based ionic liquids?   总被引:6,自引:0,他引:6  
Experimental and molecular modeling studies are conducted to investigate the underlying mechanisms for the high solubility of CO2 in imidazolium-based ionic liquids. CO2 absorption isotherms at 10, 25, and 50 degrees C are reported for six different ionic liquids formed by pairing three different anions with two cations that differ only in the nature of the "acidic" site at the 2-position on the imidazolium ring. Molecular dynamics simulations of these two cations paired with hexafluorophosphate in the pure state and mixed with CO2 are also described. Both the experimental and the simulation results indicate that the anion has the greatest impact on the solubility of CO2. Experimentally, it is found that the bis(trifluoromethylsulfonyl)imide anion has the greatest affinity for CO2, while there is little difference in CO2 solubility between ionic liquids having the tetrafluoroborate or hexafluorophosphate anion. The simulations show strong organization of CO2 about hexafluorophosphate anions, but only small differences in CO2 structure about the different cations. This is consistent with the experimental finding that, for a given anion, there are only small differences in CO2 solubility for the two cations. Computed and measured densities, partial molar volumes, and thermal expansion coefficients are also reported.  相似文献   

2.
We have measured the terahertz (THz) complex dielectric spectra of imidazolium ionic liquids by THz time-domain spectroscopy (THz-TDS) in the frequency range from 5 (0.15 THz) to 140 cm(-1) (4.2 THz). The ionic liquids investigated are 1-ethyl-3-methylimidazolium (EMIm+)/trifluoromethanesulfonate (TfO-), EMIm+/tetrafluoroborate (BF(4)-), 1-butyl-3-methylimidazolium (BMIm+)/TfO-, and BMIm+/BF(4)-. The dielectric values of the ionic liquids in the THz region are similar to those of short-chain alcohols. The THz dielectric values are related to subpicosecond-to-picosecond dynamics. The same trend has been observed in the empirical polarity ET(30) although it is related to the static characteristics of polarity and hydrogen bonding ability. A difference between the two types of liquids is observed in the THz dielectric spectral shapes: the ionic liquids show structured lineshapes but short-chain alcohols show much less structured ones. The structured lineshapes of the ionic liquids reflect the low-frequency motions of interion and/or intramolecular vibrations. When the ionic liquids composed of the different imidazolium cations contain the same anions as counterions, their density-normalized THz dielectric spectra above 20 cm(-1) bear strong resemblance to each other in shape and magnitude. It shows clearly that the THz spectra do not originate from the intramolecular vibrations of the imodazolium cations. All of the intramolecular vibrations of the anions are located above 140 cm(-1) except the CF3-SO3 torsion of TfO-, the band of which alone cannot explain the broad THz dielectric spectra of the ionic liquids. Therefore, we conclude that the interion vibrations rather than the intramolecular vibrations dominantly contribute to the THz dielectric spectra. The results strongly indicate that even in the liquid phase the ionic liquids have local structures similar to their solid-phase structures.  相似文献   

3.
We propose a novel self-diffusion model for ionic liquids on an atomic level of detail. The model is derived from molecular dynamics simulations of guanidinium-based ionic liquids (GILs) as a model case. The simulations are based on an empirical molecular mechanical force field, which has been developed in our preceding work, and it relies on the charge distribution in the actual liquid. The simulated GILs consist of acyclic and cyclic cations that were paired with nitrate and perchlorate anions. Self-diffusion coefficients are calculated at different temperatures from which diffusive activation energies between 32-40 kJ/mol are derived. Vaporization enthalpies between 174-212 kJ/mol are calculated, and their strong connection with diffusive activation energies is demonstrated. An observed formation of cavities in GILs of up to 6.5% of the total volume does not facilitate self-diffusion. Instead, the diffusion of ions is found to be determined primarily by interactions with their immediate environment via electrostatic attraction between cation hydrogen and anion oxygen atoms. The calculated average time between single diffusive transitions varies between 58-107 ps and determines the speed of diffusion, in contrast to diffusive displacement distances, which were found to be similar in all simulated GILs. All simulations indicate that ions diffuse by using a brachiation type of movement: a diffusive transition is initiated by cleaving close contacts to a coordinated counterion, after which the ion diffuses only about 2 A until new close contacts are formed with another counterion in its vicinity. The proposed diffusion model links all calculated energetic and dynamic properties of GILs consistently and explains their molecular origin. The validity of the model is confirmed by providing an explanation for the variation of measured ratios of self-diffusion coefficients of cations and paired anions over a wide range of values, encompassing various ionic liquid classes as well as the simulated GILs. The proposed diffusion model facilitates the qualitative a priori prediction of the impact of ion modifications on the diffusive characteristics of new ionic liquids.  相似文献   

4.
The structures and conformational properties of 1-alkyl-3-methylimidazolium halide ionic liquids have been studied with a Becke's 3 Parameter functional method. The interaction mechanisms between the cation and the anion in 1-ethyl-3-methylimidazolium (Emim+) halide and 1-butyl-3-methylimidazolium (Bmim+) halide ionic liquids were investigated using 6-31G*, 6-31++G**, and 6-311++G** basis sets. Forty structures of different ion pairs were optimized and geometrical parameters of them have been discussed in details. Halide ions (Cl- or Br-) have been gradually placed in different regions around imidazolium cation and the interaction energies between the anion and the cation have been calculated. Theoretical results indicate that there are four activity regions in the vicinity of the imidazolium cations, in these regions the imidazolium cations and the halide anions formed stable ion pairs. Imidazolium cations can form hydrogen bond interactions with one, two or three but no more than three nearest halide anions. The halide ions are situated in hydrogen bond positions rather than at random.  相似文献   

5.
This is the fourth article of a series that describes the parametrization of a force field for the molecular simulation of common ionic liquids within the framework of statistical mechanics. The force field was developed in the spirit of the OPLS-AA model and is thus oriented toward the calculation of equilibrium thermodynamic and structural properties in the condensed (liquid) phase. The ions modeled in the present paper are cations of the 1,2,3-trialkylimidazolium and alkoxycarbonyl imidazolium families and alkylsulfate and alkylsulfonate anions. As in previous publications, the force field is built in a stepwise manner that allows, for example, the construction of models for an entire family of cations or anions, with alkyl side chains of different length. Because of the transferability of the present force field, the ions studied here can be combined with those reported in our three previous publications to create a large variety of ionic liquids that can be studied by molecular simulation. The extension of the force field was validated by comparison of simulation results with the corresponding crystal structure and liquid density experimental data.  相似文献   

6.
Stability constants of silver(I) complexes with cryptand 222 were measured in a number of ionic liquids, applying potentiometric titration. The ionic liquids were based on 1-butyl-3-methylimidazolium, 1-ethyl-3-methylimidazolium, 1-butyl-1-methyl-pyrrolidinium and 1-methyl-1-propyl-pyrrolidinium cations, as well as on tetrafluoroborate, triflate and bis(trifluoromethane sulfonyl) imide. The stability constants, expressed in log K scale, were within the broad range of 8.4–17.2. The formation of the Ag+222 cryptates was not detected in ionic liquids based on halide anions. Free enthalpy of silver(I) transfer from dimethylsulfoxide as a reference molecular solvent to ionic liquids was calculated applying the cryptate assumption. The results were discussed in terms of the competition between silver(I) complexation by ion forming ionic liquid and its complexation by cryptand 222.in final form: 6 December 2004This revised version was published online in July 2005 with a corrected issue number.  相似文献   

7.
The sorption of CO2 is often used to modify the macroscopic properties of liquids and solids. In the particular case of ionic liquids, different from molecular liquids, the sorption of CO2 may not induce volume expansions due to the strong Coulombic interactions between the ions of the fluid. However, a considerable viscosity decrease has been systematically observed. In order to understand the mechanisms of properties modifications in ionic fluids, herein we used Raman spectroscopy to probe the effect of CO2 on the structure of ionic liquids. It is shown that CO2 perturbs the electrostatic interactions between cations and anions, thus inducing a change in the polar domain of ionic liquids. It is observed that ionic liquids having bulkier ions are more prone to be perturbed by CO2 in comparison to ionic liquids having smaller ions. These results reveal new means of controlling the electrostatic forces between the ions and contributes to the mechanistic understanding of the modification of the macroscopic properties of ionic liquids by CO2 sorption.  相似文献   

8.
Molecular dynamics simulations of ionic liquids [1-alkyl-3-methylimidazolium (alkyl = ethyl, butyl and hexyl), N-butylpyridinium, N-butyl-N,N,N-trimethylammonium and N-butyl-N-methylpyrrolidinium cations combined with the (CF(3)SO(2))(2)N(-) (TFSA) anion] show that the conformational flexibility of the alkyl chains in the cations is one of the important factors determining the diffusion of ions. Artificial constraint imposed on the internal rotation of alkyl chains significantly decreases the self-diffusion coefficients of cations and anions. The internal rotation of the C-N bond connecting the alkyl chain and the aromatic ring has large effects on the diffusion of ions in imidazolium and pyridinium based ionic liquids. The calculated self-diffusion coefficients of cations and anions decrease 20-40% by imposing the torsional constraint of the C-N bond. On the other hand the torsional constraint of the C-N bond does not largely change the diffusion of ions in the quaternary alkyl ammonium based ionic liquids. The conformational flexibility of the terminal C-C-C-C bond of the alkyl chains has large effects on the diffusion of ions in the quaternary alkyl ammonium based ionic liquids. The influence of the electrostatic interactions and the high density of ionic liquids on the diffusion of ions were studied. The electrostatic interactions have the paramount importance on the slow diffusion of ions in ionic liquids, while the high density of ionic liquids is also responsible for the slow diffusion. The electrostatic interactions and the high density of ionic liquids enhance the effects of the torsional constraint on the diffusion of ions, which suggests that the charge-ordering structure and small free volume originated in the strong electrostatic interactions are the causes of the significant effects of the conformational flexibility on the diffusion of ions in ionic liquids.  相似文献   

9.
This Letter examines the relationship between the structures of ionic liquids and their water-solubility or osmotic pressure with a number of synthesized quaternary ammonium type ionic liquids and organic salts containing a hydroxyl group as hydrophilic substituted groups on ammonium group cations, and bromide or methylsulfonate as anions. The study found a linear relation between the amount and osmotic pressure of the water-soluble ionic liquids synthesized here, strongly indicating that these water-soluble ionic liquids are perfectly ionized in water like inorganic salts with small diameter ions.  相似文献   

10.
Aqueous solutions of ionic liquids are of special interest, due to the distinctive properties of ionic liquids, in particular, their amphiphilic character. A better understanding of the structure–property relationships of such systems is hence desirable. One of the crucial molecular‐level interactions that influences the macroscopic behavior is hydrogen bonding. In this work, we conduct molecular dynamics simulations to investigate the effects of ionic liquids on the hydrogen‐bond network of water in dilute aqueous solutions of ionic liquids with various combinations of cations and anions. Calculations are performed for imidazolium‐based cations with alkyl chains of different lengths and for a variety of anions, namely, [Br]?, [NO3]?, [SCN]?, [BF4]?, [PF6]?, and [Tf2N]?. The structure of water and the water–ionic liquid interactions involved in the formation of a heterogeneous network are analyzed by using radial distribution functions and hydrogen‐bond statistics. To this end, we employ the geometric criterion of the hydrogen‐bond definition and it is shown that the structure of water is sensitive to the amount of ionic liquid and to the anion type. In particular, [SCN]? and [Tf2N]? were found to be the most hydrophilic and hydrophobic anions, respectively. Conversely, the cation chain length did not influence the results.  相似文献   

11.
Density functional theory methods in combination with vibrational spectroscopy are used to investigate possible variants of molecular structure of the ion pairs of several imidazolium-based ionic liquids (ILs). Multiple stable structures are determined with the anion positioned (a) near to the C2 atom of the imidazolium ring, (b) between N1 and C5, (c) between N3 and C4, and (d) between C4 and C5. Chloride and bromide anions in vacuum also occupy positions above or below the imidazolium ring, but in the condensed state these positions are destabilized. In comparison with the halides that almost equally occupy the positions (a-d), tetrafluoroborate and hexafluorophosphate anions strongly prefer position (a). The position and the type of the anion influence the conformation of the side chains bound to the imidazolium N1 atom, which are able to adopt in vacuum all usual staggered or eclipsed conformations, although in the liquid state some of the conformations are present only as minor forms if at all. Vibrations of the cations depend both on the conformational changes and on the association with the anion. The formation of the ion pairs influences mainly stretching and out-of-plane vibrations of the imidazolium C-H groups and stretching vibrations of the perfluoroanions. Other modes of the ions retain their individuality and practically do not mix. This allows "interionic" vibrations to be separated and to regard the couple of the ions as an anharmonic oscillator. Such a model correlates the molecular structure of various ILs and their melting points without involving the energy of the interaction between the cations and anions but explains structure-melting point correlations on the grounds of quasy-elastic properties.  相似文献   

12.
This is the third set of parameters of a force field for the molecular simulation of ionic liquids, developed within the spirit of the OPLS-AA model and thus oriented toward the calculation of equilibrium thermodynamic and structural properties. The parameter sets reported here concern the cations alkylimidazolium, tetra-alkylphosphonium, and N-alkylpyridinium, and the anions chloride, bromide, and dicyanamide. The force field is built in a stepwise manner that allows the construction of models for an entire family of cations, with alkyl side chains of different length, for example. Due to the transferability of the present force field, the ions studied here can be combined with those reported in our two previous publications to create a large variety of ionic liquids that can be studied by molecular simulation. The parameters reported were obtained through different series of ab initio calculations concerning the geometry, force constants, torsion energy profiles, and electrostatic charge distributions of the ions under study. Validation of the force field consisted of comparison with experimental crystal structure and liquid density data.  相似文献   

13.
Potential applications of ionic liquids depend on the properties of this class of liquid material. To a large extent the structure and properties of these Coulomb systems are determined by the intermolecular interactions among anions and cations. In particular the subtle balance between Coulomb forces, hydrogen bonds and dispersion forces is of great importance for the understanding of ionic liquids. The purpose of the present paper is to answer three questions: Do hydrogen bonds exist in these Coulomb fluids? To what extent do hydrogen bonds contribute to the overall interaction between anions and cations? And finally, are hydrogen bonds important for the physical properties of ionic liquids? All these questions are addressed by using a suitable combination of experimental and theoretical methods including newly synthesized imidazolium-based ionic liquids, far infrared spectroscopy, terahertz spectroscopy, DFT calculations, differential scanning calorimetry (DSC), viscometry and quartz-crystal-microbalance measurements. The key statement is that although ionic liquids consist solely of anions and cations and Coulomb forces are the dominating interaction, local and directional interaction such as hydrogen bonding has significant influence on the structure and properties of ionic liquids. This is demonstrated for the case of melting points, viscosities and enthalpies of vaporization. As a consequence, a variety of important properties can be tuned towards a larger working temperature range, finally expanding the range of potential applications.  相似文献   

14.
Short-time dynamics of ionic liquids has been investigated by low-frequency Raman spectroscopy (4 < ω < 100 cm(-1)) within the supercooled liquid range. Raman spectra are reported for ionic liquids with the same anion, bis(trifluoromethylsulfonyl)imide, and different cations: 1-butyl-3-methylimidazolium, 1-hexyl-3-methylimidazolium, 1-butyl-1-methylpiperidinium, trimethylbutylammonium, and tributylmethylammonium. It is shown that low-frequency Raman spectroscopy provides similar results as optical Kerr effect (OKE) spectroscopy, which has been used to study intermolecular vibrations in ionic liquids. The comparison of ionic liquids containing aromatic and non-aromatic cations identifies the characteristic feature in Raman spectra usually assigned to librational motion of the imidazolium ring. The strength of the fast relaxations (quasi-elastic scattering, QES) and the intermolecular vibrational contribution (boson peak) of ionic liquids with non-aromatic cations are significantly lower than imidazolium ionic liquids. A correlation length assigned to the boson peak vibrations was estimated from the frequency of the maximum of the boson peak and experimental data of sound velocity. The correlation length related to the boson peak (~19 A?) does not change with the length of the alkyl chain in imidazolium cations, in contrast to the position of the first-sharp diffraction peak observed in neutron and X-ray scattering measurements of ionic liquids. The rate of change of the QES intensity in the supercooled liquid range is compared with data of excess entropy, free volume, and mean-squared displacement recently reported for ionic liquids. The temperature dependence of the QES intensity in ionic liquids illustrates relationships between short-time dynamics and long-time structural relaxation that have been proposed for glass-forming liquids.  相似文献   

15.
The specific adsorption of Cl? ions at the bismuth-ethanol interface has been studied both in the solutions of mixed electrolytes with constant ionic strength and in the binary LiCl solutions by the method of measuring the potential dependence of differential capacity of bismuth. The charge due to specifically adsorbed anions was calculated from the experimental capacity data. It was found that in the case of specific adsorption of Cl? ions at the bismuth—ethanol interface the conditions of undercharged as well as recharded surface of electrode could be observed experimentally. The analysis of the results obtained by fitting the charge of specifically adsorbed ions to the modified virial isotherm including the diffuse layer correction term suggests that in the conditions of recharge of the bismuth surface cations enter the inner part of the double layer and a considerable ionic association occurs in the inner layer. A procedure has been proposed for calculating the charge due to cations in the inner layer, for determining the actual value of the outer Helmholtz plane potential and for evaluating the real parameters of the adsorption isotherm. The reliability of the results of calculations was verified by comparing the data obtained by the method of mixed electrolytes both considering and neglecting the ionic association in the inner layer with the data of the method of binary electrolyte.  相似文献   

16.
We have prepared novel room temperature ionic liquids (RTILs) with trimethylsilylmethyl (TMSiM)-substituted imidazolium cations and compared the properties of these liquids with those for which the TMSiM group is replaced by the analogous neopentyl group. The ionic liquids are prepared with both tetrafluoroborate (BF(4)(-)) and bis(trifluoromethylsulfonyl)imide (NTf(2)(-)) anions paired with the imidazolium cations. At 22 degrees C, the TMSiM-substituted imidazolium ILs have shear viscosities that are reduced by a factor of 1.6 and 7.4 relative to the alkylimidazolium ILs for the NTf(2)(-) and BF(4)(-) anions, respectively. To understand the effect of silicon substitution on the viscosity, the charge densities have been calculated by using density functional theory electronic structure calculations. The ultrafast intermolecular, vibrational, and orientational dynamics of these RTILs have been measured by using femtosecond optical heterodyne-detected Raman-induced Kerr effect spectroscopy (OHD-RIKES). The intermolecular dynamical spectrum provides an estimate of the strength of interactions between the ions in the RTILs, and provides a qualitative explanation for the observed reduction in viscosity for the silicon-substituted RTILs.  相似文献   

17.
Infrared vibrational spectroscopy was used to probe concentration-dependent ion pair dissociation of imidazolium-based ionic liquids with three different halide anions (I, Br, and Cl) in deuterated chloroform. Dissociation of the ion pairs at low concentrations of ionic liquids was found to be the easiest for ionic liquid with Cl anion, the most electronegative anion among the three investigated. This anomalous trend of ion pair dissociation was explained in terms of varying interaction strength between the solvent (CDCl3) and the anions investigated.  相似文献   

18.
Direct spectroscopic evidence for hydrogen‐bonded clusters of like‐charged ions is reported for ionic liquids. The measured infrared O?H vibrational bands of the hydroxyethyl groups in the cations can be assigned to the dispersion‐corrected DFT calculated frequencies of linear and cyclic clusters. Compensating the like‐charge Coulomb repulsion, these cationic clusters can range up to cyclic tetramers resembling molecular clusters of water and alcohols. These ionic clusters are mainly present at low temperature and show strong cooperative effects in hydrogen bonding. DFT‐D3 calculations of the pure multiply charged clusters suggest that the attractive hydrogen bonds can compete with repulsive Coulomb forces.  相似文献   

19.
Elemental tellurium readily dissolves in ionic liquids (ILs) based on tetraalkylphosphonium cations even at temperatures below 100 °C. In the case of ILs with acetate, decanoate, or dicyanamide anions, dark red to purple colored solutions form. A study combining NMR, UV-Vis and Raman spectroscopy revealed the formation of tellurium anions (Ten)2− with chain lengths up to at least n=5, which are in dynamic equilibrium with each other. Since external influences could be excluded and no evidence of an ionic liquid reaction was found, disproportionation of the tellurium is the only possible dissolution mechanism. Although the spectroscopic detection of tellurium cations in these solutions is difficult, the coexistence of tellurium cations, such as (Te4)2+ and (Te6)4+, and tellurium anions could be proven by cyclic voltammetry and electrodeposition experiments. DFT calculations indicate that electrostatic interactions with the ions of the ILs are sufficient to stabilize both types of tellurium ions in solution.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号