首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We present the random phase approximation (RPA) theory of the Bose-Einstein-condensation-Bardeen-Cooper-Schrieffer crossover in an atomic Fermi gas near a Feshbach resonance that includes the relevant two-body atomic physics exactly. This allows us to determine the probability for the dressed molecules in the Bose-Einstein condensate to be in the closed channel of the Feshbach resonance and to compare with the recent experiments of Partridge et al. [95, 020404 (2005)10.1103/PhysRevLett.95.020404] with , who have measured the same quantity.  相似文献   

2.
The ground state of an atomic Fermi gas near the Feshbach resonance for a negative scattering length is investigated using the variational method. The structure of the superfluid state is formed by two coherently coupled subsystems, viz., the quasimolecular subsystem in a closed channel and the subsystem of atomic pairs in an open channel. The derived system of equations makes it possible to describe the properties of the ground state for arbitrary values of the parameters (in particular, to find the gap in the single-particle Fermi excitation spectrum and the speed of sound characterizing the branch of collective Bose excitations).  相似文献   

3.
We determine the physical properties of p-wave Feshbach molecules in doubly spin-polarized 40K and find excellent agreement with recent experiments. We show that these molecules have a large probability Z to be in the closed channel or bare molecular state responsible for the Feshbach resonance. In the superfluid state this allows for observation of Rabi oscillations between the molecular and atomic components of the Bose-Einstein condensed pairs, which contains a characteristic signature of the quantum phase transition that occurs as a function of applied magnetic field.  相似文献   

4.
We study a spin-polarized degenerate Fermi gas interacting via a p-wave Feshbach resonance in an optical lattice. The strong confinement available in this system allows us to realize one- and two-dimensional gases and, therefore, to restrict the asymptotic scattering states of atomic collisions. When aligning the atomic spins along (or perpendicular to) the axis of motion in a one-dimensional gas, scattering into channels with the projection of the angular momentum of /m/ = 1 (or m = 0) can be inhibited. In two and three dimensions, we observe the doublet structure of the p-wave Feshbach resonance. For both the one-dimensional and the two-dimensional gases, we find a shift of the position of the resonance with increasing confinement due to the change in collisional energy. In a three-dimensional optical lattice, the losses on the Feshbach resonance are completely suppressed.  相似文献   

5.
We realize and study a strongly interacting two-component atomic Fermi gas confined to two dimensions in an optical lattice. Using radio-frequency spectroscopy we measure the interaction energy of the strongly interacting gas. We observe the confinement-induced Feshbach resonance on the attractive side of the 3D Feshbach resonance and find the existence of confinement-induced molecules in very good agreement with theoretical predictions.  相似文献   

6.
Using a narrow intercombination line in alkaline earth atoms to mitigate large inelastic losses, we explore the optical Feshbach resonance effect in an ultracold gas of bosonic (88)Sr. A systematic measurement of three resonances allows precise determinations of the optical Feshbach resonance strength and scaling law, in agreement with coupled-channel theory. Resonant enhancement of the complex scattering length leads to thermalization mediated by elastic and inelastic collisions in an otherwise ideal gas. Optical Feshbach resonance could be used to control atomic interactions with high spatial and temporal resolution.  相似文献   

7.
严祥传  孙大立  王璐  闵靖  彭世国  江开军 《中国物理 B》2022,31(1):16701-016701
We observe characteristic atomic behaviors in the Bose-Einstein-condensation-Bardeen-Cooper-Schrieffer(BEC-BCS)crossover,by accurately tuning the magnetic field across the Feshbach resonance of lithium atoms.The magnetic field is calibrated by measuring the Zeeman shift of the optical transition.A non-monotonic anisotropic expansion is observed across the Feshbach resonance.The density distribution is explored in different interacting regimes,where a condensate of diatomic molecules forms in the BEC limit with the indication of a bimodal distribution.We also measure the three-body recombination atom loss in the BEC-BCS crossover,and find that the magnetic field of the maximum atom loss is in the BEC limit and gets closer to the Feshbach resonance when decreasing the atom temperature,which agrees with previous experiments and theoretical prediction.This work builds up a controllable platform for the study on the strongly interacting Fermi gas.  相似文献   

8.
We investigate the modulational instability of symmetric and asymmetric continuous wave solutions in Bose–Einstein condensates in optical lattices with Feshbach resonance managed atomic scattering length. The model is based on a pair of averaged coupled mode Gross–Pitaevskii equations. We analyze the characteristics of the modulational instability in the form of typical dependence of the instability growth rate on the perturbation wavenumber and system’s parameters. We have numerically solved the coupled mode equations by using the split step Fourier method. Convincing agreement has been obtained between analytical and numerical results. Furthermore, the moving and stationary gap solitons in the first spectral gap of the optical lattices for the same amplitude but different phases in the presence and absence of the mean atomic scattering length under the Feshbach resonance management are also constructed.  相似文献   

9.
We observe large-amplitude Rabi oscillations between an atomic and a molecular state near a Feshbach resonance. The experiment uses 87Rb in an optical lattice and a Feshbach resonance near 414 G. The frequency and amplitude of the oscillations depend on the magnetic field in a way that is well described by a two-level model. The observed density dependence of the oscillation frequency agrees with theoretical expectations. We confirmed that the state produced after a half-cycle contains exactly one molecule at each lattice site. In addition, we show that, for energies in a gap of the lattice band structure, the molecules cannot dissociate.  相似文献   

10.
The atomic Bose gas is studied across a Feshbach resonance, mapping out its phase diagram, and computing its thermodynamics and excitation spectra. It is shown that such a degenerate gas admits two distinct atomic and molecular superfluid phases, with the latter distinguished by the absence of atomic off-diagonal long-range order, gapped atomic excitations, and deconfined atomic π-vortices. The properties of the molecular superfluid are explored, and it is shown that across a Feshbach resonance it undergoes a quantum Ising transition to the atomic superfluid, where both atoms and molecules are condensed. In addition to its distinct thermodynamic signatures and deconfined half-vortices, in a trap a molecular superfluid should be identifiable by the absence of an atomic condensate peak and the presence of a molecular one.  相似文献   

11.
We apply a two-channel Skyrme–Hartree–Fock model to describe an atomic Bose–Einstein condensate near a Feshbach resonance. In this model the single-atom wave-function has two components corresponding to the two intrinsic states of the atom related to the Feshbach resonance. From the variational principle we derive the corresponding system of two coupled equations for the single-atom wave-function—a generalization of the Gross–Pitaevskii equation. We carry out an exploratory gaussian variational calculation and show that the two-component model can successfully describe the collapse of the condensate near a Feshbach resonance.  相似文献   

12.
We investigate the two-color laser modulation of the magnetically induced Feshbach resonance. The two-color laser is nearly resonant with an optical bound-to-bound transition at the resonance position. The analytical formula of scattering length is obtained by solving the Heisenberg equation. The scattering length can be modified by changing the Rabi frequencies or optical field frequency. By choosing the suitable optical parameters, the two-body loss coefficient K2 can be greatly reduced compared to the usual single optical scheme.  相似文献   

13.
We propose to create ultracold ground state molecules in an atomic Bose-Einstein condensate by adiabatic crossing of an optical Feshbach resonance. We envision a scheme where the laser intensity and possibly also frequency are linearly ramped over the resonance. Our calculations for (87)Rb show that for sufficiently tight traps it is possible to avoid spontaneous emission while retaining adiabaticity, and conversion efficiencies of up to 50% can be expected.  相似文献   

14.
Molecules are created from a Bose-Einstein condensate of atomic 87Rb using a Feshbach resonance. A Stern-Gerlach field is applied, in order to spatially separate the molecules from the remaining atoms. For detection, the molecules are converted back into atoms, again using the Feshbach resonance. The measured position of the molecules yields their magnetic moment. This quantity strongly depends on the magnetic field, thus revealing an avoided crossing of two bound states at a field value slightly below the Feshbach resonance. This avoided crossing is exploited to trap the molecules in one dimension.  相似文献   

15.
We study the short-time dynamics of a degenerate Fermi gas positioned near a Feshbach resonance following an abrupt jump in the atomic interaction resulting from a change of magnetic field. We investigate the dynamics of the condensate order parameter and pair wave function for a range of field strengths. When the jump is sufficient to span the BCS to Bose-Einstein condensation crossover, we show that the rigidity of the momentum distribution precludes any atom-molecule oscillations in the entrance channel dominated resonances observed in 40K and 6Li. Focusing on material parameters tailored to the 40K Feshbach resonance at 202.1 G, we comment on the integrity of the fast sweep projection technique as a vehicle to explore the condensed phase in the crossover region.  相似文献   

16.
Z. Koinov 《Annalen der Physik》2010,522(10):693-698
A system of equal mixture of 6Li atomic Fermi gas of two hyperfine states loaded into a cubic three‐dimensional optical lattice is studied assuming a negative scattering length (BCS side of the Feshbach resonance). When the interaction is attractive, fermionic atoms can pair and form a superfluid. The dispersion of the phonon‐like mode and the speed of sound in the long‐wavelength limit are obtained by solving the Bethe‐Salpeter equations for the collective modes of the attractive Hubbard Hamiltonian.  相似文献   

17.
Using a Feshbach resonance, we create ultracold fermionic molecules starting from a Bose-Fermi atom gas mixture. The resulting mixture of atoms and weakly bound molecules provides a rich system for studying few-body collisions because of the variety of atomic collision partners for molecules; either bosonic, fermionic, or distinguishable atoms. Inelastic loss of the molecules near the Feshbach resonance is dramatically affected by the quantum statistics of the colliding particles and the scattering length. In particular, we observe a molecule lifetime as long as 100 ms near the Feshbach resonance.  相似文献   

18.
We have observed optically induced Feshbach resonances in a cold ( <1 mK) sodium vapor. The optical coupling of the ground and excited-state potentials changes the scattering properties of an ultracold gas in much the same way as recently observed magnetically induced Feshbach resonances, but allows for some experimental conveniences associated with using lasers. The scattering properties can be varied by changing either the intensity or the detuning of a laser tuned near a photoassociation transition to a molecular state in the dimer. In principle this method allows the scattering length of any atomic species to be altered. A simple model is used to fit the dispersive resonance line shapes.  相似文献   

19.
We calculate the number statistics of a single-mode molecular field excited by photo-association or via a Feshbach resonance from an atomic Bose-Einstein condensate (BEC), a normal atomic Fermi gas, and a Fermi system with pair correlations (BCS state). We find that the molecule formation from a BEC leads for short times to a coherent molecular state in the quantum optical sense. Atoms in a normal Fermi gas, on the other hand, result for short times in a molecular field analog of a classical chaotic light source. The BCS situation is intermediate between the two and goes from producing an incoherent to a coherent molecular field with an increasing gap parameter. This distinct signature of the initial atomic state in the resulting molecular field makes single molecule counting into a powerful diagnostic tool.  相似文献   

20.
We study a one-dimensional gas of fermionic atoms interacting via an s-wave molecular Feshbach resonance. At low energies the system is characterized by two Josephson-coupled Luttinger liquids, corresponding to paired atomic and molecular superfluids. We show that, in contrast to higher dimensions, the system exhibits a quantum phase transition from a phase in which the two superfluids are locked together to one in which, at low energies, quantum fluctuations suppress the Feshbach resonance (Josephson) coupling, effectively decoupling the molecular and atomic superfluids. Experimental signatures of this quantum transition include the appearance of an out-of-phase gapless mode (in addition to the standard gapless in-phase mode) in the spectrum of the decoupled superfluid phase and a discontinuous change in the molecular momentum distribution function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号