首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
We explore how in response calculations for excitation energies with wavefunction based (e.g., coupled cluster) methods the number of double excitation amplitudes can be reduced by means of truncated pair natural orbital (PNO) expansions and localized occupied orbitals. Using the CIS(D) approximation as a test model, we find that the number of double excitation amplitudes can be reduced dramatically with minor impact on the accuracy if the excited state wavefunction is expanded in state-specific PNOs generated from an approximate first-order guess wavefunction. As for ground states, the PNO truncation error can also for excitation energies be controlled by a single threshold related to generalized natural occupation numbers. The best performance is found with occupied orbitals which are localized by the Pipek-Mezey localization. For a large test set of excited states we find with this localization that already a PNO threshold of 10(-8)-10(-7), corresponding to an average of only 40-80 PNOs per pair, is sufficient to keep the PNO truncation error for vertical excitation energies below 0.01 eV. This is a significantly more rapid convergence with the number doubles amplitudes than in domain-based local response approaches. We demonstrate that the number of significant excited state PNOs scales asymptotically linearly with the system size in the worst case of completely delocalized excitations and sub-linearly whenever the chromophore does not increase with the system size. Moreover, we observe that the flexibility of state-specific PNOs to adapt to the character of an excitation allows for an almost unbiased treatment of local, delocalized and charge transfer excited states.  相似文献   

4.
A method is described for calculating SCF wavefunctions for excited electronic states of atoms and molecules. The orthogonality conditions with the ground state wavefunction and the underlying excited states wavefunctions are introduced in the SCF process in a simplified form.  相似文献   

5.
6.
Intracules in position space, momentum space and phase space have been calculated for low-lying excited states of the He atom, Be atom, formaldehyde and butadiene. The phase-space intracules (Wigner intracules) provide significantly more information than the position- and momentum-space intracules, particularly for the Be atom. Exchange effects are investigated through the differences between corresponding singlet and triplet states.  相似文献   

7.
The generalized hybrid orbital (GHO) method is implemented at the second-order approximate coupled cluster singles and doubles (CC2) level for quantum mechanical (QM)/molecular mechanical (MM) electronic excited state calculations. The linear response function of CC2 in the GHO scheme is derived and implemented. The new implementation is applied to the first singlet excited states of three aromatic amino acids, phenylalanine, tyrosine, and tryptophan, and also bacteriorhodopsin for assessment. The results obtained for aromatic amino acids agreed well with the full QM CC2 calculations, while the calculated excitation energies of bacteriorhodopsin and its chromophore, all-trans retinal, reproduced the environmental shift of the experimental data. For the bacteriorhodopsin case, the environmental shift of GHO also showed good agreements with the experimental data. The contribution of the quantum effect of certain moieties in the excited states is elucidated by changing the partitioning of QM and MM regions.  相似文献   

8.
General expressions are obtained for the energies of complex and real forms of any hydrogenic orbital (n, l, m) in a cluster of point charges of any geometry. This is a perturbation calculation of hydrogenic Rydberg orbitals in a one-electron hard core approximation. A model calculation of 3d-electrons of carbene, ethylene and benzene with varying charge distribution is given.  相似文献   

9.
The dispersion terms are evaluated with the perturbation theory based on the locally projected molecular orbitals. A series of model systems, including some of the S22 set, is examined, and the calculated binding energies are compared with the published results. The basis set dependence is also examined. The dispersion energy correction is evaluated by taking into account the double excitations only of the dispersion type electron configurations and is added to the 3rd order single excitation perturbation energy, which is a good approximation to the counterpoise (CP) corrected Hartree-Fock (HF) binding energy. The procedure is the approximate "CP corrected HF + D" method. It ensures that the evaluated binding energy is approximately free of the basis set superposition error without the CP procedure. If the augmented basis functions are used, the evaluated binding energies for the predominantly dispersion-bound systems, such as rare gas dimers and halogen bonded clusters, agree with those of the reference calculations within 1 kcal mol(-1) (4 kJ mol(-1)). The limitation of the present method is also discussed.  相似文献   

10.
A time-dependent theoretical method is used to describe a UV pump?CUV probe strategy to trace, at a femtosecond time scale, the motion of vibrational wave packets created in excited states of the hydrogen molecule by measuring single ionization probabilities. We use a spectral method to solve the time-dependent Schr?dinger equation in full dimensionality, including correlation and all electronic and vibrational degrees of freedom. A pump pulse initially creates a vibrational wave packet in the intermediate electronic excited states of $\hbox{H}_2$ . The frequency of the probe is chosen to ionize the target leaving the ion in a bound vibrational state. By varying the time delay between pulses, non-dissociative single ionization is enhanced or suppressed. Energy differential ionization probabilities are reported and compared with a model based on the Franck?CCondon approximation.  相似文献   

11.
4-N, N-Dimethylaminobenzonitrile (DMABN) is a simple molecule which is extensively studied to understand the excited state kinetics and the origin of time dependent fluorescence in several organic solvents. We use a recently described method, time resolved area normalized emission spectroscopy (TRANES), for the analysis of wavelength dependent fluorescence of DMABN in acetonitrile and 1,4-dioxane. An isoemissive point was observed in the TRANES spectra, which confirms that there are only two emissive species A* and B*: A → A* ? B*.  相似文献   

12.
13.
A new method for computing polarized atomic orbitals (PAOs) is described: this method leads to very easy calculations. The space of the resulting PAOs is close to that of MC SCF MOs. Using these PAOs in the frame of a VB calculation has led to the same level of accuracy as the comparable MC SCF calculation for the dissociation energies and the lowest electronic transition energies of H2, H3 and N2.  相似文献   

14.
Femtosecond degenerate four-wave-mixing spectroscopy following an initial pump laser pulse was used to observe the wave packet dynamics in excited electronic states of gas phase iodine. The focus of the investigation was on the ion pair states belonging to the first tier dissociating into the two ions I-(1S) + I+(3P2). By a proper choice of the wavelengths of the initial pump and degenerate four-wave-mixing pulses, we were able to observe the vibrational dynamics of the B (3)Pi(u) (+) state of molecular iodine as well as the ion pair states accessible from there by a one-photon transition. The method proves to be a valuable tool for exploring higher lying states that cannot be directly accessed from the ground state due to selection rule exclusion or unfavorable Franck-Condon overlap.  相似文献   

15.
We present ab initio calculations of the quasiparticle decay times in a Buckminsterfullerene based on the many-body perturbation theory. A particularly lucid representation arises when the broadening of the quasiparticle states is plotted in the angular momentum (l) and energy (ε) coordinates. In this representation the main spectroscopic features of the fullerene consist of two occupied nearly parabolic bands, and delocalized plane-wave-like unoccupied states with a few long-lived electronic states (the superatom molecular orbitals, SAMOs) embedded in the continuum of Fermi-liquid states. SAMOs have been recently uncovered experimentally by Feng et al. [Science 320, 359 (2008)] using scanning tunneling spectroscopy. The present calculations offer an explanation of their unusual stability and unveil their long-lived nature making them good candidates for applications in the molecular electronics. From the fundamental point of view these states illustrate a concept of the Fock-space localization [B. L. Altshuler, Y. Gefen, A. Kamenev, and L. S. Levitov, Phys. Rev. Lett. 78, 2803 (1997)] with properties drastically different from the Fermi-liquid excitations.  相似文献   

16.
17.
The structural and electronic characters of four types of hydroxyl group-substituted anthocyanidins (pelargonidin, cyanidin, delphinidin, and aurantinidin) were examined using quantum chemical calculations. For these cationic molecules, both the planar and non-planar structures in the electronic ground state were determined at the B3LYP/D95 level of theory. We revealed that the planar structure is slightly more stable than the non-planar structure for each molecule. For the optimized planar structures, single excitation-configuration interaction (SE-CI) based on the restricted Hartree-Fock (RHF) wave function was evaluated and the electronic character in the low-excited states was discussed in terms of the MO theory. Symmetry adapted cluster (SAC)/SAC-CI calculations were also carried out to estimate the excitation energies precisely. The results showed that hydroxylation of the phenyl group causes a change in the excitation energies without taking the solvent effects into account. The results are in agreement with spectral experiments and previous MO calculations.  相似文献   

18.
The variable metric (VM) method is used to optimize molecular geometry in electronically excited states. A general expression for the first derivative of energy in the particular excited state is derived, considering configuration interaction of all singly excited configurations. A special expression for the excited states energy derivative is given for calculations with semiempirical methods of CNDO type. The geometry optimizations of a set of molecules in various excited states have been carried out by the CNDO/2 method. The results of computations have been discussed and compared with the available experimental data. A good agreement of the calculated geometries with the experimental ones has been shown in the first excited states and a relatively good agreement in the higher states, with some exceptions. Some special features of the proposed method are discussed.  相似文献   

19.
A simple algorithm for the determination of the number of zeros in the molecular graphs of alternant cata-condensed conjugated hydrocarbons is derived. For non-branched hydrocarbons it is shown that, from the topological point of view, only four types of ring systems exist. The given algorithm enables the derivation of a number of general regularities relating the structural features of the molecule with its stability.  相似文献   

20.
INDO wavefunctions for 1A1, 1A″ and 3A″ states of ketene and diazomethane, obtained with a RHF technique, after some geometry optimization for the excited states, are used to obtain electrostatic molecular potentials under ZDO assumptions. Ground-state results agree with the experimental behaviour and also with other theoretical calculations for both molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号