首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The paper presents single-term Haar wavelet series (STHWS) approach to the solution of nonlinear stiff differential equations arising in nonlinear dynamics. The properties of STHWS are given. The method of implementation is discussed. Numerical solutions of some model equations are investigated for their stiffness and stability and solutions are obtained to demonstrate the suitability and applicability of the method. The results in the form of block-pulse and discrete solutions are given for typical nonlinear stiff systems. As compared with the TR BDF2 method of Shampine and Gill’s method, the STHWS turns out to be more effective in its ability to solve systems ranging from mildly to highly stiff equations and is free from stability constraints.  相似文献   

2.
In this paper we give the definition of exponents which would look like Lyapunov exponents in the cases of non-smooth flows of differential equations or iterated maps, and carry back Lyapunov exponents in smooth cases. Here we test our definition by using some simple linear and nonlinear smooth examples.  相似文献   

3.
A novel diagnostic method to characterize the flow patterns in an 80 mm-i.d. L-valve had been developed by using multi-resolution analysis (MRA) of wavelet transformation on the pressure fluctuation signals which were acquired from the standpipe and the horizontal part of L-valve. Parameters including the aeration rate, aeration positions, riser gas velocity and composition of binary particle mixture (194-μm and 937-μm sand particles) were used to investigate the relationship of performance of L-valve and its pressure fluctuations. By means of MRA, the original pressure fluctuations were divided into multi-scale signals. They were macro-scale, meso-scale and micro-scale successfully described the structures of gas–solid flow in the L-valve, such as the gas bubbles/slugs, dune-ripple flow, suspension particle flow, etc.  相似文献   

4.
A generalized hyperbolic perturbation method is presented for homoclinic solutions of strongly nonlinear autonomous oscillators,in which the perturbation procedure is improved for those systems whose exact homoclinic generating solutions cannot be explicitly derived.The generalized hyperbolic functions are employed as the basis functions in the present procedure to extend the validity of the hyperbolic perturbation method.Several strongly nonlinear oscillators with quadratic,cubic,and quartic nonlinearity are studied in detail to illustrate the efficiency and accuracy of the present method.  相似文献   

5.
To predict the nonlinear structural responses of a ship traveling through irregular waves, a third-order Volterra model was applied based on the given irregular data. A nonlinear wave–body interaction system was identified using the nonlinear autoregressive with exogenous input (NARX) technique, which is one of the most commonly used nonlinear system identification schemes. The harmonic probing method was applied to extract the first-, second- and third-order frequency response functions of the system. To achieve this, a given set of time history data of both the irregular wave excitation and the corresponding midship vertical bending moment for a certain sea state was fed into the three-layer perceptron neural network. The network parameters are determined based on the supervised training. Next, the harmonic probing method was applied to the identified system to extract the frequency response function of each order. While applying the harmonic probing method, the nonlinear activation function (i.e., the hyperbolic tangent function) was expanded into a Taylor series for harmonic component matching. After the frequency response functions were obtained, the structural responses of the ship under an arbitrary random wave excitation were easily calculated with rapidity using a third-order Volterra series. Additionally, the methodology was validated through the in-depth analysis of a nonlinear oscillator model for a weak quadratic and cubic stiffness term, whose analytic solutions are known. It was confirmed that the current method effectively predicts the nonlinear structural response of a large container carrier under arbitrary random wave excitation.  相似文献   

6.
In the present work, we propose a numerical analysis of instability and bifurcations for geometrically nonlinear elasticity problems. These latter are solved by using the Asymptotic Numerical Method (ANM) associated with the Method of Fundamental Solutions (MFS). To compute bifurcation points and to determine the critical loads, we propose three techniques. The first one is based on a geometrical indicator obtained by analyzing the Taylor series. The second one exploits the properties of the Padé approximants, and the last technique uses an analytical bifurcation indicator. Numerical examples are studied to show the efficiency and the reliability of the proposed algorithms.  相似文献   

7.
In this paper, a wavelet multiresolution technique is proposed to identify time-varying properties of hysteretic structures. It is well known that arbitrary transient functions can be effectively and accurately approximated using wavelet multiresolution expansions due to wavelet's good time-frequency localization property. By decomposing the time-varying parameters with wavelet multiresolution expansion, a time-varying parametric identification problem can be transformed into a time-invariant non-parametric one. The identification in the time-invariant wavelet multiresolution domain can be achieved by choosing a wavelet basis function and performing a suitable parameter estimation technique. Since wavelet representation of arbitrary signal uses only a small number of terms, the orthogonal forward regression algorithm can be adopted for significant term selection and parameter estimation. Single and multiple degrees of freedom Bouc-Wen hysteretic structures with gradual and abrupt varying properties are used to illustrate the proposed approach. Results show that the wavelet multiresolution technique can identify and track the time-varying hysteretic parameters quite accurately. The effect of measurement noise is also studied. It is found that the presence of noise would affect more on the damping ratios and the Bouc-Wen parameters but less on the equivalent stiffness coefficients.  相似文献   

8.
The singularity theory is applied to study the bifurcation behaviors of a reduced rotor model obtained by nonlinear transient POD method in this paper. A six degrees of freedom (DOFs) rotor model with cubically nonlinear stiffness supporting at both ends is established by the Newton's second law. The nonlinear transient POD method is used to reduce a six-DOFs model to a one-DOF one. The reduced model reserves the dynamical characteristics and occupies most POM energy of the original one. The singularity of the reduced system is analyzed, which replaces the original system. The bifurcation equation of the reduced model indicates that it is a high co-dimension bifurcation problem with co-dimension 6, and the universal unfolding (UN) is provided. The transient sets of six unfolding parameters, the bifurcation diagrams between the bifurcation parameter and the state variable are plotted. The results obtained in this paper present a new kind of method to study the UN theory of multi-DOFs rotor system.  相似文献   

9.
Parametric identification of nonlinear systems using multiple trials   总被引:1,自引:0,他引:1  
It is observed that the harmonic balance (HB) method of parametric identification of nonlinear system may not give right identification results for a single test data. A multiple-trial HB scheme is suggested to obtain improved results in the identification, compared with a single sample test. Several independent tests are conducted by subjecting the system to a range of harmonic excitations. The individual data sets are combined to obtain the matrix for inversion. This leads to the mean square error minimization of the entire set of periodic orbits. It is shown that the combination of independent test data gives correct results even in the case where the individual data sets give wrong results.  相似文献   

10.
This research studies the effects of axial preload on nonlinear dynamic characteristics of a flexible rotor supported by angular contact ball bearings. A dynamic model of ball bearings is improved for modeling a five-degree-of-freedom rotor bearing system. The predicted results are in good agreement with prior experimental data, thus validating the proposed model. With or without considering unbalanced forces, the Floquet theory is employed to investigate the bifurcation and stability of system periodic solution. With the aid of Poincarè maps and frequency response, the unstable motion of system is analyzed in detail. Results show that the effects of axial preload applied to ball bearings on system dynamic characteristics are significant. The unstable periodic solution of a balanced rotor bearing system can be avoided when the applied axial preload is sufficient. The bifurcation margins of an unbalanced rotor bearing system enhance markedly as the axial preload increases and relates to system resonance speed.  相似文献   

11.
Detection of rolling bearing defects using discrete wavelet analysis   总被引:2,自引:0,他引:2  
In the detection of bearing faults the so much desired objective remains the extraction of the defect vibratory signature from the measured signal in which immerses the random noise and other components of the machine. In this article a denoising method of the measured signals is presented. Based on the optimization of wavelet multiresolution analysis, it uses the kurtosis as an optimization and evaluation criterion, several parameters were then selected. The experimental results show the validity of this method within the detection of several defects simulated on ball bearings. The various configurations, in which the signals were measured, allow leading to optimum conditions of its application. The application of WMRA on filtered signals allows better results than its application on wide bands signals or a simple band pass filtering.  相似文献   

12.
The spectrograph is a signal-processing tool often used for the frequency domain analysis of time-varying signals. When the signal to be analyzed is a function of time, the spectrograph represents the frequency content of the signal as a sequence of power spectra that change with time. In this paper, the usefulness of the technique is demonstrated in its application to the analysis of the time history response of a nonlinear aeroelastic system. The aeroelastic system is modelled analytically as a two-dimensional, rigid airfoil section free to move in both the bending and pitching directions and possessing a rigid flap. The airfoil is mounted by torsional and translational springs attached at the elastic axis, and the flap is used to provide the forcing input to the system. The nonlinear system is obtained by introducing a freeplay type of nonlinearity in the pitch degree-of-freedom restoring moment. The airfoil is immersed in an aerodynamic flow environment, modelled using incompressible thin airfoil theory for unsteady oscillatory motion. The equations of motion are solved using a fourth-order Runge–Kutta numerical integration technique to provide time-history solutions of the response of the airfoil in the pitch and plunge directions. Time-histories are obtained for the nonlinear responses of the linear and nonlinear aeroelastic systems to a sine-sweep input. The time-histories are analyzed using the spectrographic technique, and the frequency content of the response is plotted directly as a function of the input frequency. Results show that the combination of the sine-sweep input with the spectrographic analysis permits a unique insight into the behavior of the nonlinear system with a minimum of testing. It is shown that the frequency of the nonlinear system response is a function of the input frequency and one other characteristic frequency that can be associated with the limit cycle oscillations of the same nonlinear system subject to a transient input.  相似文献   

13.
We propose a wavelet method in the present study to analyze the large deflection bending and post-buckling problems of rods composed of non-linearly elastic materials, which are governed by a class of strong non-linear differential equations. This wavelet method is established based on a modified wavelet approximation of an interval bounded L2-function, which provides a new method for the large deflection bending and post-buckling problems of engineering structures. As an example, in this study, we considered the rod structures of non-linear materials that obey the Ludwick and the modified Ludwick constitutive laws. The numerical results for both large deflection bending and post-buckling problems are presented, illustrating the convergence and accuracy of the wavelet method. For the former, the wavelet solutions are more accurate than the finite element method and the shooting method embedded with the Euler method. For the latter, both bifurcation and limit loads can be easily and directly obtained by solving the extended systems. On the other hand, for the shooting method embedded with Runge–Kutta method, to obtain these values usually needs to choose a good starting value and repeat trial solutions many times, which can be a tough task.  相似文献   

14.
提出了一般概率摄动有限元法,并用以解决了具有向量值和矩阵值函数的多自由度非线性随机结构系统承受随机激励的响应分析问题,应用Kronecker代数,矩阵微分理论,向量值和矩阵值函数的二阶矩技术,矩阵摄动理论和概率统计方法系统地扩展了国际上通用的随机有限元法,随机变量和系统导数很方便地排列到二维矩阵中,得到了优美的数学表达式。  相似文献   

15.
The nonlinear partial differential equation model of Gibson et al. which governs one-dimensional large-strain consolidation is solved numerically using a semi-discrete formulation involving a Galerkin weighted residual approach. The use of quadratic Lagrange basis functions usually complicates the task of solving the system of time-dependent ordinary differential equations that are obtained with the semi-discrete Galerkin procedure. However, an efficient algorithm has been discovered yielding the advantages of quadratic interpolation without undue computational burden.Although considerable effort has already been made to solve the PDE of large-strain consolidation by numerical methods, a satisfactory set of benchmarks is still needed to assess accuracy. To fill this need, three procedures are reported which allow numerical solutions of the large-strain model to be reliably evaluated. One involves the use of perturbation methodology to provide a solution when only self-weight effects are present. A second utilizes an analytical solution developed by Philip when self-weight effects are absent and the third involves the exact calculation of the discharge flux through the upper boundary of a deposit consolidating through self-weight effects alone. All three are restricted to early-time consolidation and are illustrated in the context of the finite element method.  相似文献   

16.
This paper deals with the prediction of the effective properties of nonlinear composites. Rather than bounding the effective energy, this work aims at bounding directly the effective stress-strain response, by extending a method originally introduced by Milton and Serkov (J. Mech. Phys. Solids 48 (2000) 1295) and recently refined by Talbot and Willis (Proc. Roy. Soc. 460 (2004) 2705). In this paper, bounding the effective response is achieved by introducing a linear comparison composite with the same micro-geometry as the given nonlinear composite, as Ponte Castañeda (J. Mech. Phys. Solids 39 (1991) 45) did for the energy. It is found that any lower bound for the energy of the linear comparison composite generates a corresponding bound for the stress-strain response of the nonlinear composite. A selection of examples is presented to illustrate the method and compare the bounds obtained with existing results.  相似文献   

17.
In this pepar we consider the upwind difference scheme of a kind of boundary value problems for nonlinear, second order, ordinary differential equations. Singular perturbation method is applied to construct the asymptotic approximation of the solution to the upwind difference equation. Using the theory of exponential dichotomies we show that the solution of an order-reduced equation is a good approximation of the solution to the upwind difference equation except near boundaries. We construct correctors which yield asymptotic approximations by adding them to the solution of the order-reduced equation. Finally, some numerical examples are illustrated.  相似文献   

18.
The effect of the control structure interaction on the feedforward control law as well as the dynamics of flexible mechanical systems is examined in this investigation. An inverse dynamics procedure is developed for the analysis of the dynamic motion of interconnected rigid and flexible bodies. This method is used to examine the effect of the elastic deformation on the driving forces in flexible mechanical systems. The driving forces are expressed in terms of the specified motion trajectories and the deformations of the elastic members. The system equations of motion are formulated using Lagrange's equation. A finite element discretization of the flexible bodies is used to define the deformation degrees of freedom. The algebraic constraint equations that describe the motion trajectories and joint constraints between adjacent bodies are adjoined to the system differential equations of motion using the vector of Lagrange multipliers. A unique displacement field is then identified by imposing an appropriate set of reference conditions. The effect of the nonlinear centrifugal and Coriolis forces that depend on the body displacements and velocities are taken into consideration. A direct numerical integration method coupled with a Newton-Raphson algorithm is used to solve the resulting nonlinear differential and algebraic equations of motion. The formulation obtained for the flexible mechanical system is compared with the rigid body dynamic formulation. The effect of the sampling time, number of vibration modes, the viscous damping, and the selection of the constrained modes are examined. The results presented in this numerical study demonstrate that the use of the driving forees obtained using the rigid body analysis can lead to a significant error when these forces are used as the feedforward control law for the flexible mechanical system. The analysis presented in this investigation differs significantly from previously published work in many ways. It includes the effect of the structural flexibility on the centrifugal and Coriolis forces, it accounts for all inertia nonlinearities resulting from the coupling between the rigid body and elastic displacements, it uses a precise definition of the equipollent systems of forces in flexible body dynamics, it demonstrates the use of general purpose multibody computer codes in the feedforward control of flexible mechanical systems, and it demonstrates numerically the effect of the selected set of constrained modes on the feedforward control law.  相似文献   

19.
基于小波变换的爆破地震信号能量分析法的应用研究   总被引:14,自引:0,他引:14  
根据爆破地震信号具有持时短、突变快等特点,结合工程爆破地震监测资料,利用小波包良好的时频局部化性质对爆破地震信号的能量分布特征进行了分析,研究了爆破地震信号的能量在传播过程中的变化规律,得到了爆破地震信号不同频带上的能量分布。根据爆破地震信号不同频带的特征频率与受控建筑物自振频率之间的关系,确定爆破地震对建筑物的影响。并用工程实例说明了该方法比用单一强度因子作为爆破地震的安全判据更加有效。  相似文献   

20.
A methodology designed for identifying chaos of the nonlinear systems subjected to double excitations is proposed. Based on simulations in this study, it is shown by bifurcation diagram that method of Poincaré sections, the conventional chaos-observing method, fails to pinpoint the onset of chaotic motions with the nonlinear systems subjected to double excitations. To remedy this problem, “Ks integration method” is proposed, which integrates the distance between trajectories and origin in phase plane over an excitation period and designates the obtained integration values as Ks's to take the roles of the sampling points derived by Poincaré sections in constructing bifurcation diagram. This “Ks integration method” is shown capable of providing valuable information in bifurcation diagram such that the parameter range leading to chaos can be easily decided and the number of distinguishable time-domain responses can be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号