首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability of surface passivation to enhance the photoluminescence (PL) emission of Si nanocrystals in SiO2 has been investigated. Silicon precipitation in implanted samples takes place in a time scale of few minutes at 1100°C. For longer annealing at the same temperature, the PL intensity of the Si nanocrystals increases and eventually reaches saturation, while it correlates inversely with the amount of Si dangling bonds at the Si–SiO2 interface (Pb centers), as measured by electron spin resonance. This combined behavior is independent on the silica matrix properties, implantation profiles and annealing atmosphere and duration. The observation that the light emission enhancement is directly related to the annealing of Pb centers is confirmed by treatment in forming gas. This mild hydrogenation at much lower temperature (450°C) leads to a complete passivation of the Pb defects, increasing at the same time the PL yield and the lifetime.  相似文献   

2.
Effects of Ar+ ion-beam irradiation on solid-phase growth of β-FeSi2 have been investigated. Fe (10 nm)/Si structures were irradiated with 25 keV Ar+ (5.0×1015 cm−2) at a temperature of 25°C (sample A) or 400°C (sample B), and subsequently annealed at 800°C. A reference was obtained after annealing without irradiation (sample C). X-ray diffraction results indicated that β-FeSi2 was formed after annealing at 800°C for 5 h, and the formation rate was the fastest for sample A and the slowest for sample C, i.e., A>BC. However, Auger electron spectroscopy measurements showed that atomic mixing at Fe/Si interface before annealing was B>AC. These results suggested that amorphization of Si substrate, in addition to atomic mixing, enhanced the solid-phase growth of β-FeSi2, which was confirmed experimentally. Moreover, a direct band gap of 0.89 eV was observed for the sample with pre-amorphization by the Fourier-transform infrared (FT-IR) spectroscopy measurements. These enhancement effects were attributed to that the phase transition to β-FeSi2 was accelerated by atomic arrangement induced during annihilation of excess vacancies. These enhancement effects can be utilized for nano-fabrication of β-FeSi2 by using focused ion-beam irradiation.  相似文献   

3.
In the present paper we report structural and photoluminescence (PL) results from samples obtained by Si implantation into stoichiometric silicon nitride (Si3N4) films. The Si excess was introduced in the matrix by 170 keV Si implantation performed at different temperatures with a fluence of Φ=1×1017 Si/cm2. The annealing temperature was varied between 350 and 900 °C in order to form the Si precipitates. PL measurements, with a 488 nm Ar laser as an excitation source, show two superimposed broad PL bands centered around 760 and 900 nm. The maximum PL yield is achieved for the samples annealed at 475 °C. Transmission electron microscopy (TEM) measurements show the formation of amorphous nanoclusters and their evolution with the annealing temperature.  相似文献   

4.
The effects of aluminum (Al-) doping in SiO2 film containing silicon-nanocrystal (nc-Si) dots were investigated by photoluminescence (PL) and electron spin resonance (ESR) measurements. The observed PL peak center showed a blueshift due to reduction of size of nc-Si dots as a result of the Al doping followed by annealing within a range of 600–800 °C. For the samples annealed at 1000 °C, the PL intensity showed increases with increasing concentration of Al atoms in the SiO2. The ESR results obtained from all the samples, however, revealed that the density of defects causing the PL quenching did not show decrease by the Al doping. Therefore, the enhancement of the PL intensity by the Al doping seemed to be caused probably by the increase in the density of nc-Si dots.  相似文献   

5.
The Ag2O–TiO2–SiO2 glasses were prepared by Ag+/Na+ ion-exchange method from Na2O–TiO2–SiO2 glasses at 380–450 °C below their glass transition temperatures (Tg), and their electrical conductivities were investigated as functions of TiO2 content and the ion-exchange ratio (Ag/(Ag+Na)). In a series of glasses 20R2xTiO2·(80−x)SiO2 with x=10, 20, 30 and 40 in mol%, the electrical conductivities at 200 °C of the fully ion-exchanged glasses of R=Ag were in the order of 10−5 or 10−4 S cm−1 and were 1 or 2 orders of magnitude higher than those of the initial glasses of R=Na. The glass of x=30 exhibited the highest increase of conductivity from 3.8×10−7 to 1.3×10−4 S cm−1 at 200 °C by Ag+/Na+ ion exchange among them. When the ion-exchange ratio was changed in 20R2O·30TiO2·50SiO2 system, the electrical conductivity at 200 °C exhibited a minimum value of 7.6×10−8 S cm−1 around Ag/(Ag+Na)=0.3 and increased steeply in the region of Ag/(Ag+Na)=0.5–1.0. When the ion-exchange temperature was changed from 450 to 400 °C, the conductivity of the ion-exchanged glass of x=30 decreased. The infrared spectroscopy measurement revealed that the ion-exchange temperature of 450 °C induced a structural change in the glass of x=30. The Tg of the fully ion-exchanged glass of x=30 was 498 °C. It was suggested that the incorporated silver ions changed the average coordination number of titanium ions to form higher ion-conducting pathway and resulted in high conductivity in the titanosilicate glasses.  相似文献   

6.
Silicon ions were implanted into the films of silicon oxide obtained by thermal oxidation of silicon wafers in a damp oxygen. Accumulation of the implantation dose was performed either in one step or cyclically in step-by-step mode, and after each stage of implantation the samples were annealed in a dry nitrogen. The second series of the samples differed from the first one by the formation of SiO2 matrix that included additional annealing in the air at 1100 °C for 3 h before ion implantation. X-ray absorption near edge structure (XANES) was obtained with the use of synchrotron radiation. Two absorption edges were observed in all of Si L2,3-spectra. One of them is related to elementary silicon while the other one-to silicon in SiO2. The fine structure of the first one indicates the formation of nanocrystalline silicon nc-Si in SiO2 matrix. Its atomic and electron structure depends on the technology of formation. For both series of samples, a cyclical accumulation of the total dose Φ=1017 cm−2 (for the total time of annealing—2 h) resulted in the appearance of more distinct structure in the range of absorption edge for the elementary silicon as compared with the case of single-step accumulation dose. In the more “dense” oxide of the samples from the second series, the probability of formation of silicon nanocrystals in a thin near-surface region of the implanted layer was reduced. These results can be interpreted with the account of the previously obtained photoluminescence, Raman scattering and electron microscopy data for these samples.  相似文献   

7.
Silicon nanocrystals were prepared by Si+-ion implantation and subsequent annealing of SiO2 films thermally grown on a c-Si wafer. Different implantation energies (20-150 keV) and doses - cm -2 ) were used in order to achieve flat implantation profiles (through the thickness of about 100 nm) with a peak concentration of Si atoms of 5, 7, 10 and 15 atomic%. The presence of Si nanocrystals was verified by transmission electron microscopy. The samples exhibit strong visible/IR photoluminescence (PL) with decay time of the order of tens of μs at room temperature. The changes of PL in the range 70-300 K can be well explained by the exciton singlet-triplet splitting model. We show that all PL characteristics (efficiency, dynamics, temperature dependence, excitation spectra) of our Si+-implanted SiO2 films bear close resemblance to those of a light-emitting porous Si and therefore we suppose similar PL origin in both materials. Received 1st September 1998 and Received in final form 7 September 1999  相似文献   

8.
吴志永  刘克新  任晓堂 《中国物理 B》2010,19(9):97806-097806
Photoluminescence (PL) spectra of Si nanocrystals (NCs) prepared by 130 keV Si ions implantation onto SiO2 matrix were investigated as a function of annealing temperature and implanted ion dose. PL spectra consist of two PL peaks, originated from smaller Si NCs due to quantum confinement effect (QCE) and the interface states located at the surface of larger Si NCs. The evolution of number of dangling bonds (DBs) on Si NCs was also investigated. For hydrogen-passivated samples, a monotonic increase in PL peak intensity with the dose of implanted Si ions up to 3×1017 ions /cm2 is observed. The number of DBs on individual Si NC, the interaction between DBs at the surface of neighbouring Si NCs and their effects on the efficiency of PL are discussed.  相似文献   

9.
Silicon nanostructures, called Si nanowhiskers, have been successfully synthesized on Si(1 0 0) substrate by high vacuum electron beam annealing (EBA). Detailed analysis of the Si nanowhisker morphology depending on annealing temperature, duration and the temperature gradients applied in the annealing cycle is presented. A correlation was found between the variation in annealing temperature and the nanowhisker height and density. Annealing at 935 °C for 0 s, the density of nanowhiskers is about 0.2 μm−2 with average height of 2.4 nm grow on a surface area of 5×5 μm, whereas more than 500 nanowhiskers (density up to 28 μm−2) with an important average height of 4.6 nm for field emission applications grow on the same surface area for a sample annealed at 970 °C for 0 s. At a cooling rate of −50 °C s−1 during the annealing cycle, 10–12 nanowhiskers grew on a surface area of 5×5 μm, whereas close to 500 nanowhiskers grew on the same surface area for samples annealed at the cooling rate of −5 °C s−1. An exponential dependence between the density of Si nanowhiskers and the cooling rate has been found. At 950 °C, the average height of Si nanowhiskers increased from 4.0 to 6.3 nm with an increase of annealing duration from 10 to 180 s. A linear dependence exists between the average height of Si nanowhiskers and annealing duration. Selected results are presented showing the possibility of controlling the density and the height of Si nanowhiskers for improved field emission properties by applying different annealing temperatures, durations and cooling rates.  相似文献   

10.
SiOx films (1<x<2), 0.5 μm thick, have been elaborated by electron-gun evaporation. A thermal annealing of these films induced a phase separation leading to the formation of Si nanocrystals embedded in a SiO2 matrix. These films have been studied by infrared spectroscopic ellipsometry and by X-ray photoelectron spectroscopy (XPS). The effective dielectric function of the thin films has been extracted in the 600–5000 cm−1 range which allowed us to deduce the dielectric function of the matrix surrounding the Si-nc. A study of the Transverse Optical (TO) vibration mode has revealed the presence of SiOx into the matrix. Before XPS measurements, the films have been etched in fluorhydric acid to remove the superficial SiO2 layer formed during air exposure. The Si 2p core-level emission has been recorded. The decomposition of the Si 2p peak into contributions of the usual five tetrahedrons Si-(Si4−nOn) (n=0–4) has also revealed the presence of a SiOx phase. Consistency between infra-red and XPS results is discussed.  相似文献   

11.
We report the evolution of photoluminescence (PL) of Si nanocrystals (nc-Si) embedded in a matrix of SiO2 during Ar+ ion bombardment. The integrated intensity of nc-Si PL falls down drastically before the Ar+ ion fluence of 1015 ions cm−2, and then decreases slowly with the increasing ion fluence. At the meantime, the PL peak position blueshifts steadily before the fluence of 1015 ions cm−2, and then changes in an oscillatory manner. Also it is found that the nc-Si PL of the Ar+-irradiated sample can be partly recovered after annealing at 800 °C in nitrogen, but can be almost totally recovered after annealing in oxygen. The results confirm that the ion irradiation-induced defects are made up of oxygen vacancies, which absorb light strongly. The oscillatory peak shift of nc-Si can be related to a size-distance distribution of nc-Si in SiO2.  相似文献   

12.
The formation of silicon nanoclusters embedded in amorphous silicon nitride (SiNx:H) can be of great interest for optoelectronic devices such as solar cells. Here amorphous SiNx:H layers have been deposited by remote microwave-assisted chemical vapor deposition at 300 °C substrate temperature and with different ammonia [NH3]/silane [SiH4] gas flow ratios (R=0.5−5). Post-thermal annealing was carried out at 700 °C during 30 min to form the silicon nanoclusters. The composition of the layers was determined by Rutherford back scattering (RBS) and elastic recoil detection analysis (ERDA). Fourier transform infrared spectroscopy (FTIR) showed that the densities of SiH (2160 cm−1) and NH (3330 cm−1) molecules are reduced after thermal annealing for SiN:H films deposited at flow gas ratio R>1.5. Breaking the SiH bonding provide Si atoms in excess in the bulk of the layer, which can nucleate and form Si nanostructures. The analysis of the photoluminescence (PL) spectra for different stoichiometric layers showed a strong dependence of the peak characteristics (position, intensity, etc.) on the gas flow ratio. On the other hand, transmission electron microscopy (TEM) analysis proves the presence of silicon nanoclusters embedded in the films deposited at a gas flow ratio of R=2 and annealed at 700 °C (30 min).  相似文献   

13.
The pure rotational spectrum of CH2F2 was recorded in the 20–100 cm−1 spectral range and analyzed to obtain rotation and centrifugal distortion constants. Analysis of the data yielded rotation constants: A = 1.6392173 ± 0.0000015, B = 0.3537342 ± 0.00000033, C = 0.3085387 ± 0.00000027, τaaaa = −(7.64 ± 0.46) × 10−5, τbbbb = −(2.076 ± 0.016) × 10−6, τcccc = −(9.29 ± 0.12) × 10−7, T1 = (4.89 ± 0.20) × 10−6, and T2 = −(1.281 ± 0.016) × 10−6cm−1.  相似文献   

14.
In this work, SiO2 layers containing Ge nanocrystals (NCs) obtained by the hot implantation approach were submitted to an ion irradiation process with different 2 MeV Si+ ion fluences. We have investigated the photoluminescence (PL) behavior and structural properties of the irradiated samples as well as the features of the PL and structural recovery after an additional thermal treatment. We have shown that even with the highest ion bombardment fluence employed (2×1015 Si/cm2) there is a residual PL emission (12% from the original) and survival of some Ge NCs is still observed by transmission electron microscopy analysis. Even though the final PL and mean diameter of the nanoparticles under ion irradiation are independent of the implantation temperature or annealing time, the PL and structural recovery of the ion-bombarded samples have a memory effect. We have also observed that the lower the ion bombardment fluence, the less efficient is the PL recovery. We have explained such behavior based on current literature data.  相似文献   

15.
This work demonstrates that by combining three methods with different mechanisms to enhance the photoluminescence (PL) intensity of Si nanocrystals embedded in SiO2 (or Si-nc:SiO2), a promising material for developing Si light sources, a very high PL intensity can be achieved. A 30-layered sample of Si-nc:SiO2/SiO2 was prepared by alternatively evaporating SiO and SiO2 onto a Si(1 0 0) substrate followed by thermal annealing at 1100 °C. This multilayered sample possessed a fairly high PL efficiency of 14% as measured by Greenham's method, which was 44 times that of a single-layered one for the same amount of excess Si content. Based on this multilayered sample, treatments of CeF3 doping and hydrogen passivation were subsequently applied, and a high PL intensity which was 167 times that of a single-layered one for the same amount of excess Si content was achieved.  相似文献   

16.
Ro-vibrational spectra of HNCS and DNCS have been obtained in the spectral range 300–4000 cm−1 with a practical resolution limit of 0.06 cm−1 in the region 350–1200 cm−1 and 0.15 cm−1 in the region 1200–4000 cm−1. The observed fine structure permitted definitive assignments for some of the PQK, QQK, and RQK branches in both molecules, and yielded sets of rotational constants in substantial agreement with those obtained from recent microwave and far-infrared studies. Precise estimates of the band origins have been obtained and there is evidence of second-order Coriolis coupling between the three bending modes in each molecule. The isolation of the out-of-plane bending modes has lead to a re-assignment of ν3, ν4, ν5, and ν6 for each molecule. The band origins, uncorrected for Coriolis interaction, are for HNCS and DNCS, respectively. v1:3538.6 ±0.3, 2644.5±0.5cm−1;v2:1989.0 ±0.3, 1944.3±0.5cm−1;v3:857.0 ±0.6, 851.0±0.1cm−1;v4:615.0 ±0.5, 549.1±0.2cm−1;v5:469.2 ±0.1, 365.8 ±0.2cm−1;v6:539.2 ±0.5, 481.0±0.1cm−1;  相似文献   

17.
Completely amorphous Fe-Si layers are formed by Fe implantation into Si substrate at a dosage of 5×1015 cm−2 using a metal vapor vacuum arc (MEVVA) ion source under 80 kV extraction voltage and cryogenic temperature. After thermal annealing, β-FeSi2 precipitates are formed in Si matrix. The influence of impurities in these amorphous Fe-Si layers on the photoluminescence (PL) from β-FeSi2 precipitates is investigated. PL is found to be significantly enhanced by optimizing the impurity concentration and annealing scheme. After 60 s of rapid thermal annealing (RTA) at 900 °C, β-FeSi2 precipitates in medium boron-doped Si substrate give the strongest PL intensity without boron out-diffusion from them.  相似文献   

18.
A multilayered Si nanocrystal-doped SiO2/Si (or Si-nc:SiO2/Si) sample structure is studied to acquire strong photoluminescence (PL) emission of Si via modulating excess Si concentration. The Si-nc:SiO2 results from SiO thin film after thermal annealing. The total thickness of SiO layer remains 150 nm, and is partitioned equally into a number of sublayers (N = 3, 5, 10, or 30) by Si interlayers. For each N-layered sample, a maximal PL intensity of Si can be obtained via optimizing the thickness of Si interlayer (or dSi). This maximal PL intensity varies with N, but the ratio of Si to O is nearly a constant. The brightest sample is found to be that of N = 10 and dSi = 1 nm, whose PL intensity is ∼5 times that of N = 1 without additional Si doping, and ∼2.5 times that of Si-nc:SiO2 prepared by co-evaporating of SiO and Si at the same optimized ratio of Si to O. Discussions are made based on PL, TEM, EDX and reflectance measurements.  相似文献   

19.
Using the photoluminescence surface state spectroscopy (PLS3) technique, attempts were made to determine the surface state density (Nss) distribution on AlxGa1−xAs (x≈0.3) surfaces passivated by the Si interface control layer (ICL) technique. Air-exposed AlGaAs epitaxial wafers which are technologically important for fabrication of various devices were passivated ex situ by forming a SiO2/Si3N4/Si ICL/AlGaAs structure after the HCl treatment and their photoluminescence behavior was investigated in detail. The result of the PLS3 analysis indicated that Si ICL-based passivation reduces the minimum interface state density value down to 1010 cm−2 eV−1 range. Some indication was also obtained that further improvements are possible by using electron cyclotron resonance (ECR)-enhanced N2 plasma for Si3N4/Si ICL interface formation.  相似文献   

20.
Effects of different ions implantation on yellow luminescence from GaN   总被引:1,自引:0,他引:1  
The influence of C, N, O, Mg, Si and co-implants (Mg+Si) ions implantation with fluences in the wide range 1013-1017 cm−2 on the yellow luminescence (YL) properties of wurtzite GaN has been studied by photoluminescence (PL) spectroscopy. Two types of n-type GaN samples grown by metal-organic chemical vapor deposition method (MOCVD) and labeled as No-1 and No-2 were studied. In their as-grown states, No-1 samples had strong YL, while No-2 samples had weak YL. Results of the frontside and backside PL measurements in one of the as-grown GaN epifilms are also presented. Comparing the intensity of YL between frontside and backside PL spectra, the backside PL spectrum shows the more intense YL intensity. This implies that most of the intrinsic defects giving rise to YL exist mainly near the interface between the epilayer and buffer layer. Our experimental results show that the intensity ratio of YL to near-band-edge UV emission (IYL/IUV) decreases gradually by increasing the C implantation fluence from 1013 to 1016 cm−2 for No-1 samples after annealing at 900 °C. When the fluence is 1017 cm−2, a distinct change of the IYL/IUV is observed, which is strongly increased after annealing. For No-2 samples, after annealing the IYL/IUV decreases gradually with increase in the C implantation fluence from 1013 to 1015 cm−2. The IYL/IUV is gradually increased with increasing C fluence from 1016 to 1017 cm−2 after annealing, while IYL/IUV for other ions-implanted GaN samples decreases monotonically with increase in the ions implantation fluences from 1013 to 1017 cm−2 for both No-1 samples and No-2 samples. It is noted that for annealed C-implanted No-2 samples IYL/IUV is much higher than that of the as-grown one and other ion-implanted ones. In addition, IYL/IUV for the Mg, Si, and co-implants (Mg+Si) implanted No-2 samples with a fluence of 1013 cm−2 after being annealed at 900 °C is higher than that of the as-grown one. Based on our experimental data and literature results reported previously, the origins of the YL band have been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号