首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents the results of an experimental study on the developing pulsatile flow in curved pipes with a long, straight pipe upstream. In order to examine the dependence of flow-field development on the governing parameters, LDV measurements were conducted systematically for six cases of flow, where the Womersley number α was varied from 5.5 to 18, the mean Dean number D m was 200 and 300, the flow rate ratio η was 0.5 and 1, and the curvature radius ratio Rc was 10 and 30. Peculiar flow phenomena, such as flow reversal for all values of α and a depression in the axial velocity profile for α = 10, were analyzed by decomposing the axial velocity into a time-mean and a varying component, as well as by obtaining the bias of their profiles. The velocity distributions abruptly change with the phase at turn angles Ω of 15–30°, corresponding to the nondimensional axial length z′ ≅ 1–2 from the bend entrance, and their development along the pipe axis is the most complicated for the flow at a moderate α of 10 and large η of 1. The entrance length in the case of pulsatile flow is shorter than that for steady flow with the same flow rate as the maximum pulsatile flow rate.  相似文献   

2.
A class of steady potential flows of an ideal fluid is considered in which the fluid flows between fixed boundaries and then emerges as a jet with one free boundary. Gravity acts on the fluid perpendicularly to the direction of the jet at infinity downstream. An inverse Froude number α is defined in terms of the flux Q and the depth d of the fluid at the separation point. It is proved that for each α>0 there is at most one flow which reaches to a supercritical uniform stream depth at infinity downstream. Monotonicity properties are proved for various flow parameters, and the behaviour of the flow as α → 0 is described.  相似文献   

3.
Drag Reduction of a Circular Cylinder Using an Upstream Rod   总被引:3,自引:0,他引:3  
Experimental studies on the drag reduction of the circular cylinder were conducted by pressure measurement at a Reynolds number of 82 000 (based on the cylinder diameter). A rod was placed upstream of and parallel to the cylinder to control the flow around the cylinder. The upstream rod can reduce the resultant force of the cylinder at various spacing between the rod and the cylinder for α < 5(α defined as the staggered angle of the rod and the cylinder). For α > 10, the resultant force coefficient has a large value, so the upstream rod cannot reduce the force on the cylinder any more. For α = 0 and d/D = 0.5 (where d and D are the diameter of the rod and the cylinder, respectively), the maximum drag of the cylinder reduces to 2.34% that of the single cylinder. The mechanism of the drag reduction of the cylinder with an upstream rod in tandem was presented by estimating the local contributions to the drag reduction of the pressure variation. In the staggered arrangement, the flow structures have five flow patterns (they are the cavity mode, the wake splitting mode, the wake merge mode, the weak boundary layer interaction mode and the negligible interaction mode) according to the pressure distribution and the hydrogen bubble flow visualization. The half plane upwind of the cylinder can be divided to four regions, from which one can easily estimates the force acting on the circular cylinder with an upstream rod in staggered arrangement.  相似文献   

4.
Summary We study the two-dimensional instantaneous Stokes flow driven by gravity in a viscous triangular prism supported by a horizontal rigid substrate and a vertical wall. The oblique side of the prism, inclined at an angle α with respect to the substrate, is a fluid-air interface, where the stresses are zero and surface tension is neglected. We develop the stream function ψ in polar coordinates (r,θ) centered at the vertex of α and split it into an inhomogeneous part, which accounts for gravity effects, and a homogeneous part, which is expressed as a series expansion. The inhomogeneous part and the first term of the expansion may be envisioned, respectively, as self-similar solutions of the first kind and of the second kind for r→0, each one holding in complementary α domains with a crossover at α c =21.47, which we study in some detail. The coefficients of the series are calculated by truncating the expansion and using the method of direct collocation with a suitable set of points at the wall. The solution strictly holds for t=0, because later the free surface ceases to be a plane; nevertheless, it provides a good approximation for the early time evolution of the fluid profile, as shown by the comparison with numerical simulations. For 0<α<45, the vertex angle remains constant and the edge remains strictly at rest; the transition at α c manifests itself through a change in the rate of growth of the curvature. The time at which the edge starts to move (waiting time) cannot be calculated since the instantaneous solution ceases to be valid. For α>45, the instantaneous local solution indicates that the surface near the vertex is launched against the substrate so that the edge starts to move immediately with a power law dependence on time t. However, due to the high value of the exponent, the vertex may seem to be at rest for some finite time even in this case. Received 29 August 1997; accepted for publication 21 January 1998  相似文献   

5.
We develop a continuum-mechanical formulation and generalization of the Navier–Stokes-α equation based on a recently developed framework for fluid-dynamical theories involving higher-order gradient dependencies. Our flow equation involves two length scales α and β. The first of these enters the theory through the specific free-energy α 2|D|2, where D is the symmetric part of the gradient of the filtered velocity, and contributes a dispersive term to the flow equation. The remaining scale is associated with a dissipative hyperstress which depends linearly on the gradient of the filtered vorticity and which contributes a viscous term, with coefficient proportional to β 2, to the flow equation. In contrast to Lagrangian averaging, our formulation delivers boundary conditions and a complete structure based on thermodynamics applied to an isothermal system. For a fixed surface without slip, the standard no-slip condition is augmented by a wall-eddy condition involving another length scale characteristic of eddies shed at the boundary and referred to as the wall-eddy length. As an application, we consider the classical problem of turbulent flow in a plane, rectangular channel of gap 2h with fixed, impermeable, slip-free walls and make comparisons with results obtained from direct numerical simulations. We find that α/β ~ Re 0.470 and /h ~ Re −0.772, where Re is the Reynolds number. The first result, which arises as a consequence of identifying the specific free-energy with the specific turbulent kinetic energy, indicates that the choice β = α required to reduce our flow equation to the Navier–Stokes-α equation is likely to be problematic. The second result evinces the classical scaling relation η/L ~ Re −3/4 for the ratio of the Kolmogorov microscale η to the integral length scale L.   相似文献   

6.
We describe how outer flow turbulence phenomena depend on the interaction with the wall. We investigate coherent structures in turbulent flows over different wavy surfaces and specify the influence of the different surface geometries on the coherent structures. The most important contribution to the turbulent momentum transport is attributed to these structures, therefore this flow configuration is of large engineering interest. In order to achieve a homogeneous and inhomogeneous reference flow situation two different types of surface geometries are considered: (1) three sinusoidal bottom wall profiles with different amplitude-to-wavelength ratios of α = 2a/Λ = 0.2 (Λ = 30 mm), α = 0.2 (Λ = 15 mm), and α = 0.1 (Λ = 30 mm); and (2) a profile consisting of two superimposed sinusoidal waves with α = 0.1 (Λ = 30 mm). Measurements are carried out in a wide water channel facility (aspect ratio 12:1). Digital particle image velocimetry (PIV) is performed to examine the spatial variation of the streamwise, spanwise and wall-normal velocity components in three measurement planes. Measurements are performed at a Reynolds number of 11,200, defined with the half channel height h and the bulk velocity U B. We apply the method of snapshots and perform a proper orthogonal decomposition (POD) of the streamwise, spanwise, and wall-normal velocity components to extract the most dominant flow structures. The structure of the most dominant eigenmode is related to counter-rotating, streamwise-oriented vortices. A qualitative comparison of the eigenfunctions for different sinusoidal wall profiles shows similar structures and comparable characteristic spanwise scales Λ z = 1.5 H in the spanwise direction for each mode. The scale is observed to be slightly smaller for α = 0.2 (Λ = 15 mm) and slightly larger for α = 0.2 (Λ = 30 mm). This scaling for the flow over the basic wave geometries indicates that the size of the largest structures is neither directly linked to the solid wave amplitude, nor to the wavelength. The characteristic spanwise scale of the dominant eigenmode for the developed flow over the surface consisting of two superimposed waves reduces to 0.85 H. However, a scale in the order of 1.3 H is identified for the second mode. The eigenvalue spectra for the superimposed waves is much broader, more modes contribute to the energy-containing range. The turbulent flow with increased complexity of the bottom surface is characterized by an increased number of dominant large-scale structures with different spanwise scales.  相似文献   

7.
A mixed convection flow of an optically dense viscous incompressible fluid along a horizontal circular cylinder has been studied with the effect of radiation when the surface temperature is uniform. Using appropriate transformations, the boundary layer equations governing the flow are reduced to local nonsimilarity form. Solutions of the governing equations are obtained employing the implicit finite difference method. Effects of varying the pertinent parameters, such as, the Planck number, R w the surface temperature parameter, θw and the buoyancy parameter, α on the local skin-friction and local heat transfer coefficients are shown graphically as well as in tabular form against the curvature parameter ξ, while taking Prandtl number Pr = 1.0. It is found that an increase of R dw or α leads to increases in the values of the local skin-friction and the local rate of heat transfer coefficients. At the stagnation point asymptotic solutions for large value of α are also obtained and the effect of the other pertinent parameters on the formation of the flow separation are studied. Received on 28 July 1998  相似文献   

8.
This paper is concerned with the asymptotic stability of degenerate stationary waves for viscous gases in the half space. We discuss the following two cases: (1) viscous conservation laws and (2) damped wave equations with nonlinear convection. In each case, we prove that the solution converges to the corresponding degenerate stationary wave at the rate t −α/4 as t → ∞, provided that the initial perturbation is in the weighted space L2a=L2(\mathbb R+; (1+x)a dx){L^2_\alpha=L^2({\mathbb R}_+;\,(1+x)^\alpha dx)} . This convergence rate t −α/4 is weaker than the one for the non-degenerate case and requires the restriction α < α*(q), where α*(q) is the critical value depending only on the degeneracy exponent q. Such a restriction is reasonable because the corresponding linearized operator for viscous conservation laws cannot be dissipative in L2a{L^2_\alpha} for α > α*(q) with another critical value α*(q). Our stability analysis is based on the space–time weighted energy method in which the spatial weight is chosen as a function of the degenerate stationary wave.  相似文献   

9.
A new approach on MHD natural convection boundary layer flow from a finite flat plate of arbitrary inclination in a rotating environment, is presented. This problem plays a significant role on boundary layer flow control. It is shown that taking into account the pressure rise region at the leading edge of the plate leads to avoid separation and the back flow is reduced by the strong magnetic field. It is also shown that the frictional drag at the leading edge of the plate is reduced when the inclination angle α=π/4. In the case of isothermal flat plate, the bulk temperature becomes identical for any value of Gr (Grashof number) when the value of M 2 (Hartmann number) and K 2 (rotation parameter) are kept fixed.  相似文献   

10.
In the present study, an optimal design for enhancement of heat transfer and thermal performance for a stationary channel with angled rib turbulators was investigated to find the most suitable rib geometry. Among various design parameters, two design variables, rib angle of attack (α) and pitch-to-rib height (p/e), were chosen. The ranges of two design variables were set as 30° ≤ α ≤ 80° and 3.0 ≤ p/e ≤ 15.0. Approximations for design of the best rib turbulators were obtained using the advanced response surface method with functional variables. The second-order response surfaces (or correlations) within the ranges of two design variables were completed by this method. As for the optimized results, maximum averaged heat transfer value was obtained at α = 53.31° and p/e = 6.50, while the highest thermal performance value was presented at α = 54.67° and p/e = 6.80.  相似文献   

11.
We present particle tracking velocimetry measurements and flow visualization of pulsatile flow fields in a stented cerebrovascular lateral aneurysm model with a wide ostium anchored on a curved parent vessel. Among the stent parameters, the blocking ratioC α ranging from 0% to 75% was selected to study its effect on the changes of intra-aneurysmal hemodynamics for the reference of minimally invasive endovascular aneurysm treatment. The Womersley number was 3.9 and the mean, peak, and minimal Reynolds numbers based on the bulk average velocity and diameter of the parent vessel were 600, 850, and 300, respectively. The results are characterized in terms of velocity vector field, coded streak images, region averaged velocity, vorticity, and wall shear stress. A critical range ofC α related to the inflow location as well as the shape and number of intra-aneurysmal vortices is identified. The intra-aneurysmal flow activity, vortex strength, and wall shear stress are found to decrease with increasingC α. Among theC α examined,C α=75% is the most favorable in attenuating the risk of aneurysmal rupture and promoting intra-aneurysmal thrombus.  相似文献   

12.
Flow characteristics in the interdisk midplane between two shrouded co-rotating disks were experimentally studied. A laser-assisted particle-laden flow-visualization method was used to identify the qualitative flow behaviors. Particle image velocimetry was employed to measure the instantaneous flow velocities. The flow visualization revealed rotating polygonal flow structures (hexagon, pentagon, quadrangle, triangle, and oval) existing in the core region of the interdisk spacing. There existed a difference between the rotating frequencies of the polygon and the disks. The rotating frequency ratio between the polygonal flow structure and the disks depended on the mode shapes of the polygonal core flow structures—0.8 for pentagon, 0.75 for quadrangle, 0.69 for triangle, and 0.6 for oval. The phase-resolved flow velocities relative to the bulk rotation speed of the polygonal core flow structure were calculated, and the streamline patterns were delineated. It was found that outside the polygonal core flow structure, there existed a cluster of vortex rings—each side of the polygon was associated with a vortex ring. The radial distributions of the time-averaged and phase-resolved ensemble-averaged circumferential and radial velocities were presented. Five characteristic regions (solid-body rotation region, hub-influenced region, buffer region, vortex region, and shroud-influenced region) were identified according to the prominent physical features of the flow velocity distributions in the interdisk midplane. In the solid-body rotation region, the fluid rotated at the angular velocity of the disks and hub. In the hub-influenced region, the circumferential flow velocity departed slightly from the disks’ angular velocity. The circumferential velocities in the hub-influenced and vortex regions varied linearly with variation of radial coordinates. The phase-resolved ensemble-averaged relative radial velocity profiles in the interdisk midplane at various phase angles exhibited grouping behaviors in three ranges of polygon phase angles (θ = 0 and α/2, 0 < θ < α/2, and α/2 < θ < α) because three-dimensional flow induced similar flow patterns to appear in the same range of polygon phase angles.  相似文献   

13.
In this paper we investigate a subgrid model based on an anisotropic version of the NS-α model using a lid-driven cavity flow at a Reynolds number of 10,000. Previously the NS-α model has only been used numerically in the isotropic form. The subgrid model is developed from the Eulerian-averaged anisotropic equations (Holm, Physica D 133:215, 1999). It was found that when α 2 was based on the mesh numerical oscillations developed which manifested themselves in the appearance of streamwise vortices and a ‘mixing out’ of the velocity profile. This is analogous to the Craik–Leibovich mechanism, with the difference being that the oscillations here are not physical but numerical. The problem could be traced back to the discontinuity in α 2 encountered when α 2 = 0 on the endwalls. A definition of α 2 based on velocity gradients, rather than mesh spacing, is proposed and tested. Using this definition the results with the model show a significant improvement. The splitting of the downstream wall jet, rms and shear stress profiles are correctly captured a coarse mesh. The model is shown to predict both positive and negative energy transfer in the jet impingement region, in qualitative agreement with DNS results.  相似文献   

14.
A three-dimensional separated flow behind a swept, backward-facing step is investigated by means of DNS for Re H = C H/ν = 3000 with the purpose to identify changes in the statistical turbulence structure due to a variation of the sweep angle α from 0° up to 60°. With increasing sweep angle, the near-wall turbulence structure inside the separation bubble and downstream of reattachment changes due to the presence of an edge-parallel mean flow component W. Turbulence production due to the spanwise shear ∂W/∂y at the wall becomes significant and competes with the processes caused by impingement of the separated shear-layer. Changes due to a sweep angle variation can be interpreted in terms of two competing velocity scales which control the global budget of turbulent kinetic energy: the step-normal component U = C cosα throughout the separated flow region and the velocity difference C across the entire shear-layer downstream of reattachment. As a consequence, the significance of history effects for the development into a two-dimensional boundary layer decreases with increasing sweep angle. For α ≥50°, near-wall streaks tend to form inside the separated flow region. Received 7 November 2000 and accepted 9 July 2002 Published online 3 December 2002 RID="*" ID="*" Part of this work was funded by the Deutsche Forschungsgemeinschaft within Sfb 557. Computer time was provided by the Konrad-Zuse Zentrum (ZIB), Berlin. Communicated by R.D. Moser  相似文献   

15.
Aerodynamic forces and flow fields of a two-dimensional hovering wing   总被引:1,自引:1,他引:0  
This paper reports the results of an experimental investigation on a two-dimensional (2-D) wing undergoing symmetric simple harmonic flapping motion. The purpose of this investigation is to study how flapping frequency (or Reynolds number) and angular amplitude affect aerodynamic force generation and the associated flow field during flapping for Reynolds number (Re) ranging from 663 to 2652, and angular amplitudes (α A) of 30°, 45° and 60°. Our results support the findings of earlier studies that fluid inertia and leading edge vortices play dominant roles in the generation of aerodynamic forces. More importantly, time-resolved force coefficients during flapping are found to be more sensitive to changes in α A than in Re. In fact, a subtle change in α A may lead to considerable changes in the lift and drag coefficients, and there appears to be an optimal mean lift coefficient around α A = 45°, at least for the range of flow parameters considered here. This optimal condition coincides with the development a reverse Karman Vortex street in the wake, which has a higher jet stream than a vortex dipole at α A = 30° and a neutral wake structure at α A = 60°. Although Re has less effect on temporal force coefficients and the associated wake structures, increasing Re tends to equalize mean lift coefficients (and also mean drag coefficients) during downstroke and upstroke, thus suggesting an increasing symmetry in the mean force generation between these strokes. Although the current study deals with a 2-D hovering motion only, the unique force characteristics observed here, particularly their strong dependence on α A, may also occur in a three-dimensional hovering motion, and flying insects may well have taken advantage of these characteristics to help them to stay aloft and maneuver. An erratum to this article can be found at  相似文献   

16.
The flow of an incompressible couple stress fluid in an annulus with local constriction at the outer wall is considered. This configuration is intended as a simple model for studying blood flow in a stenosed artery when a catheter is inserted into it. The effects couple stress fluid parameters α and σ, height of the constriction (ε), and ratio of radii (k) on the impedance and wall shear stresses are studied graphically. Graphical results show that the resistance to the flow as well as the wall shear stress increases as the ratio of the radii increases and decreases as the couple stress fluid parameters increases.  相似文献   

17.
Direct and large-eddy simulations (DNS/LES) of accelerating round jets are used to analyze the effects of acceleration on the kinematics of vortex rings in the near field of the jet (x/D < 12). The acceleration is obtained by increasing the nozzle jet velocity with time, in a previously established (steady) jet, and ends once the inlet jet velocity is equal to twice its initial value. Several acceleration rates (α = 0.02–0.6) and Reynolds numbers (Re D = 500–20000) were simulated. Acceleration maps were used to make a detailed study of the kinematics of vortex rings in accelerating jets. One of the effects of the acceleration is to cause a number of new primary and secondary vortex merging events that are absent from steady jets. As the acceleration rate α increases, both the number of primary merging events between rings and the axial position where these take place decreases. The statistics for the speed of the starting ring that forms at the start of the acceleration phase for each simulation, agree well with the statistics for the “front” speed observed by Zhang and Johari (Phys Fluids 8:2185–2195, 1996). Acceleration maps and flow visualizations show that during the acceleration phase the near field coherent vortices become smaller and are formed at an higher frequency than in the steady jet, and their (mean) shedding frequency increases linearly with the acceleration rate. Finally, it was observed that the acceleration decreases the spreading rate of the jet, in agreement with previous experimental works.   相似文献   

18.
The combined effect of rotation and magnetic field is investigated for the axisymmetric flow due to the motion of a sphere in an inviscid, incompressible electrically conducting fluid having uniform rotation far upstream. The steady-state linearized equations contain a single parameter α=1/2βR m, β being the magnetic pressure number and R m the magnetic Reynolds number. The complete solution for the flow field and magnetic field is obtained and the distribution of vorticity and current density is found. The induced vorticity is O(α4) and the current density is O(R m) on the sphere.  相似文献   

19.
The interfacial crack between two dissimilar elastic-plastic materials   总被引:1,自引:0,他引:1  
This paper presents an exact asymptotic analysis on the interfacial crack between two dissimilar elastic-plastic materials. These two materials have identical hardening exponent (n 1=n 2) but different hardening coefficient (α1 ≠ α2). Two groups of the near-crack-tip fields have been obtained, which not only satisfy the continuity of both tractions (σθ, τ) and displacements (u r ,u θ) on the interface, but also meet the traction free conditions on the crack faces. The first group of fields have the mode mixityM P quite close toM P =1 (MODE I) within the whole range 0 ≤ α12 < ∞. As for the second group of fields, which is only obtained within the narrow range 0.9 ≤ α12 ≤ 1, it is found that the mode mixity changes sharply with the ratio value α12. The project supported by National Natural Science Foundation of China  相似文献   

20.
The streamwise evolution of an inclined circular cylinder wake was investigated by measuring all three velocity and vorticity components using an eight-hotwire vorticity probe in a wind tunnel at a Reynolds number Red of 7,200 based on free stream velocity (U ) and cylinder diameter (d). The measurements were conducted at four different inclination angles (α), namely 0°, 15°, 30°, and 45° and at three downstream locations, i.e., x/d = 10, 20, and 40 from the cylinder. At x/d = 10, the effects of α on the three coherent vorticity components are negligibly small for α ≤ 15°. When α increases further to 45°, the maximum of coherent spanwise vorticity reduces by about 50%, while that of the streamwise vorticity increases by about 70%. Similar results are found at x/d = 20, indicating the impaired spanwise vortices and the enhancement of the three-dimensionality of the wake with increasing α. The streamwise decay rate of the coherent spanwise vorticity is smaller for a larger α. This is because the streamwise spacing between the spanwise vortices is bigger for a larger α, resulting in a weak interaction between the vortices and hence slower decaying rate in the streamwise direction. For all tested α, the coherent contribution to [`(v2)] \overline{{v^{2}}} is remarkable at x/d = 10 and 20 and significantly larger than that to [`(u2)] \overline{{u^{2}}} and [`(w2)]. \overline{{w^{2}}}. This contribution to all three Reynolds normal stresses becomes negligibly small at x/d = 40. The coherent contribution to [`(u2)] \overline{{u^{2}}} and [`(v2)] \overline{{v^{2}}} decays slower as moving downstream for a larger α, consistent with the slow decay of the coherent spanwise vorticity for a larger α.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号