首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The novel incomplete cuboidal cluster [W3Se4H3(dmpe)3](PF6), [1](PF6), has been prepared by reduction of [W3Se4Br3(dmpe)3](PF6) with LiBH4 in THF solution. The trihydroxo complex [W3Se4(OH)3(dmpe)3](PF6), [2](PF6), was obtained by reacting [W3Se4Br3(dmpe)3](PF6) with NaOH in MeCN-H2O solution. The complexes [1](PF6) and [2](PF6) were converted to their BPh4- salts by treatment with NaBPh4. Recrystallisation of [1](BPh4) in the presence of traces of water affords the mixed dihydride hydroxo complex [W3Se4H2(OH)(dmpe)3](BPh4). The crystal structures of [1](BPh4), [2](BPh4) and [W3Se4H2(OH)(dmpe)3](BPh4) have been resolved. Although the [1]+ trihydride does not react with an excess of halide salts, reaction with HX leads to [W3Se4X3(dmpe)3]+ (X = Cl, Br). The kinetics of this reaction has been studied at 25 degrees C in MeCN-H2O solution (1:1, v/v) and found to occur with two consecutive kinetic steps. The first step is independent of the nature and concentration of the X(-) anion but shows a first order dependence on the concentration of acid (k1 = 12.0 mol(-1) dm(3) s(-1)), whereas the second one is independent of the nature and concentration of both the acid and added salts (k2 = 0.024 s(-1)). In contrast, the reaction of [2]+ with acids occurs in a single step with kobs = 0.63 s(-1)(HCl) and 0.17 s(-1)(HBr). These kinetic results are discussed on the basis of the mechanism previously proposed for the reactions of the analogous [W3S4H3(dmpe)3]+ cluster, with special emphasis on the effects caused by the change of S by Se on the rate constants for the different processes involved.  相似文献   

2.
Several intermediates and final products of the reactions of [Rh(2)(mu-CH(3)COO)(4)(CH(3)OH)(2)] with a tridentate ligand bis(2-pyridylmethyl)amine (bpa) and bidentate 2-(aminomethyl)pyridine (amp) have been isolated, and the chelation processes of these ligands to the dirhodium(II) center are discussed. The reaction of a 2 equiv amount of bpa in chloroform afforded three products, [Rh(2)(mu-CH(3)COO)(2)(eta(1)-CH(3)COO)(bpa)(2)](+) ([1]+), C(2)-[Rh(2)(mu-CH(3)COO)(2)(bpa)(2)](2+) ([2a](2+)), and C(s)-[Rh(2)(mu-CH(3)COO)(2)(bpa)(2)](2+) ([2b](2+)), where C(2) and C(s) denote the molecular symmetry of the two geometrical isomers. X-ray crystallography revealed that [1](+) contains ax-eq chelated bidentate and ax-eq-eq tridentate bpa and that [2a](2+) and [2b](2+) have two ax-eq-eq tridentate bpa ligands (ax denotes the site trans to the Rh-Rh bond, and eq, the site perpendicular to it). The reaction is initiated by almost instantaneous monodentate or inter-Rh(2)-unit bridging coordination of bpa at the ax sites, which is followed by very slow ax-eq chelate formation and then ultimate ax-eq-eq tridentate coordination. The reaction of [Rh(2)(mu-CH(3)COO)(4)(CH(3)OH)(2)] with amp in 1:2 ratio in chloroform initially gives an insoluble polymer in which amp interconnects the ax sites of the dirhodium(II) units. Further reactions afforded [Rh(2)(mu-CH(3)COO)(2)(eta(1)-CH(3)COO)(amp)(2)](+) ([4](+)) and [Rh(2)(mu-CH(3)COO)(2)(amp)(2)](2+) ([5](2)(+)). The X-ray structural studies show that [4](+) has one ax-eq and one eq-eq chelate and [5](2)(+) two eq-eq chelates. More rigid tridentate ligands 2,2':6',2"-terpyridine (tpy) and 4'-chloro-2,2':6',2"-terpyridine (Cl-tpy) have been introduced at ax sites in a monodentate mode ([Rh(2)(mu-CH(3)COO)(4)(tpy)(2)] (8) and [Rh(2)(mu-CH(3)COO)(4)(Cl-tpy)(2)] (9)). While the Rh-Rh distances of these complexes and [Rh(2)(mu-CH(3)COO)(2)(2,2'-bipyridine)(2)(py)(2)](2+) ([7](2)(+)) are practically unchanged (2.56-2.60 A) except for 8 and 9 (2.4 A), the Rh-N(ax) distances range from 2.11 to 2.35 A. Relatively short distances are found for the compounds with ax-eq or ax-eq-eq chelates (<2.22 A). Longest distances (2.32-2.35 A) found for 8 and 9 may be due to the steric effect. The distances of other complexes fall in the normal region. The visible band of the pi*(Rh-Rh) --> sigma*(Rh-Rh) transition in solid-state reflectance spectra shows a red-shift as the Rh[bond]N(ax) distances becomes longer.  相似文献   

3.
A series of group 6 transition metal half-sandwich complexes with 1,1-dichalcogenide ligands have been prepared by the reactions of Cp*MCl(4)(Cp* = eta(5)-C(5)Me(5); M = Mo, W) with the potassium salt of 2,2-dicyanoethylene-1,1-dithiolate, (KS)(2)C=C(CN)(2) (K(2)-i-mnt), or the analogous seleno compound, (KSe)(2)C=C(CN)(2) (K(2)-i-mns). The reaction of Cp*MCl(4) with (KS)(2)C=C(CN)(2) in a 1:3 molar ratio in CH(3)CN gave rise to K[Cp*M(S(2)C=C(CN)(2))(2)] (M = Mo, 1a, 74%; M = W, 2a, 46%). Under the same conditions, the reaction of Cp*MoCl(4) with 3 equiv of (KSe)(2)C=C(CN)(2) afforded K[Cp*Mo(Se(2)C=C(CN)(2))(2)] (3a) and K[Cp*Mo(Se(2)C=C(CN)(2))(Se(Se(2))C=C(CN)(2))] (4) in respective yields of 45% and 25%. Cation exchange reactions of 1a, 2a, and 3a with Et(4)NBr resulted in isolation of (Et(4)N)[Cp*Mo(S(2)C=C(CN)(2))(2)] (1b), (Et(4)N)[Cp*W(S(2)C=C(CN)(2))(2)] (2b), and (Et(4)N)[Cp*Mo(Se(2)C=C(CN)(2))(2)] (3b), respectively. Complex 4 crystallized with one THF and one CH(3)CN molecule as a three-dimensional network structure. Inspection of the reaction of Cp*WCl(4) with (KSe)(2)C=C(CN)(2) by ESI-MS revealed the existence of three species in CH(3)CN, [Cp*W(Se(2)C=C(CN)(2))(2)]-, [Cp*W(Se(2)C=C(CN)(2))(Se(Se(2))C=C(CN)(2))]-, and [Cp*W(Se(Se(2))C=C(CN)(2))(2)]-, of which [Cp*W(Se(2)C=C(CN)(2))(Se(Se(2))C=C(CN)(2))]-(5) was isolated as the main product. Treatment of 2a with 1/4 equiv of S(8) in refluxing THF resulted in sulfur insertion and gave rise to K[Cp*W(S(2)C=C(CN)(2))(S(S(2))C=C(CN)(2))](6), which crystallized with two THF molecules forming a three-dimensional network structure. 6 can also be prepared by refluxing 2a with 1/4 equiv of S(8) in THF. 3a readily added one Se atom upon treatment with 1 mol of Se powder in THF to give 4 in high yield, while the treatment of 3a or 4 with 2 equiv of Na(2)Se in THF led to formation of a dinuclear complex [(Cp*Mo)(2)(mu-Se)(mu-Se(Se(3))C=C(CN)(2))] (7). The structure of 7 consists of two Cp*Mo units bridged by a Se(2-) and a [Se(Se(3))C=C(CN)(2)](2-) ligand in which the triselenido group is arranged in a nearly linear way (163 degrees). The reaction of 2a with 2 equiv of CuBr in CH(3)CN yielded a trinuclear complex [Cp*WCu(2)(mu-Br)(mu(3)-S(2)C=C(CN)(2))(2)] (8), which crystallized with one CH(3)CN and generated a one-dimensional chain polymer through bonding of Cu to the N of the cyano groups.  相似文献   

4.
Heterodimetallic cubane-type complexes coordinated to diphosphanes [Mo(3)CoS(4)(dmpe)(3)Cl(4)](+) ([1](+)) (dmpe=1,2-bis(dimethylphosphanyl)ethane), [Mo(3)CoS(4)(dmpe)(3)Cl(4)] (1) and [Mo(3)CoS(4)(dmpe)(3)Cl(3)(CO)] (2) with 14, 15 and 16 metal electrons, respectively, have been prepared from the [Mo(3)S(4)(dmpe)(3)Cl(3)](+) trinuclear precursor using [Co(2)(CO)(8)] or CoCl(2) as cobalt source. Cluster complexes [1](+) and 1 are easily interconverted chemically and electrochemically. The Co-Cl distance increases upon electron addition and substitution of the chlorine atom coordinated to cobalt with CO only takes place in presence of a reducing agent to give complex 2. Structural changes in the intermetallic distances agree with the entering electrons occupying an orbital which is basically Mo-Mo non-bonding and slightly Mo-Co bonding. Magnetic susceptibility measurements for [1](+) and 1 are consistent with the presence of two and one unpaired electrons, respectively and therefore with an "e" character for the HOMO orbital. Oxidation of 1 with TCNQ results in the formation of a charge transfer salt formulated as [1](+)[TCNQ](-) with alternate layers of paramagnetic cluster cations and also paramagnetic organic anions. There is no magnetic interaction between layers and the thermal variation of the magnetic susceptibility has been modelled as a S= 1/2 TCNQ antiferromagnetic chain plus a S=1 cluster monomer with zero field splitting.  相似文献   

5.
The symmetric d(5) trans-bis-alkynyl complexes [Mn(dmpe)(2)(C triple bond CSiR(3))(2)] (R = Me, 1 a; Et, 1 b; Ph, 1 c) (dmpe = 1,2-bis(dimethylphosphino)ethane) have been prepared by the reaction of [Mn(dmpe)(2)Br(2)] with two equivalents of the corresponding acetylide LiC triple bond CSiR(3). The reactions of species 1 with [Cp(2)Fe][PF(6)] yield the corresponding d(4) complexes [Mn(dmpe)(2)(C triple bond CSiR(3))(2)][PF(6)] (R = Me, 2 a; Et, 2 b; Ph, 2 c). These complexes react with NBu(4)F (TBAF) at -10 degrees C to give the desilylated parent acetylide compound [Mn(dmpe)(2)(C triple bond CH)(2)][PF(6)] (6), which is stable only in solution at below 0 degrees C. The asymmetrically substituted trans-bis-alkynyl complexes [Mn(dmpe)(2)(C triple bond CSiR(3))(C triple bond CH)][PF(6)] (R = Me, 7 a; Et, 7 b) related to 6 have been prepared by the reaction of the vinylidene compounds [Mn(dmpe)(2)(C triple bond CSiR(3))(C=CH(2))] (R = Me, 5 a; Et, 5 b) with two equivalents of [Cp(2)Fe][PF(6)] and one equivalent of quinuclidine. The conversion of [Mn(C(5)H(4)Me)(dmpe)I] with Me(3)SiC triple bond CSnMe(3) and dmpe afforded the trans-iodide-alkynyl d(5) complex [Mn(dmpe)(2)(C triple bond CSiMe(3))I] (9). Complex 9 proved to be unstable with regard to ligand disproportionation reactions and could therefore not be oxidized to a unique Mn(III) product, which prevented its further use in acetylide coupling reactions. Compounds 2 react at room temperature with one equivalent of TBAF to form the mixed-valent species [[Mn(dmpe)(2)(C triple bond CH)](2)(micro-C(4))][PF(6)] (11) by C-C coupling of [Mn(dmpe)(2)(C triple bond CH)(C triple bond C*)] radicals generated by deprotonation of 6. In a similar way, the mixed-valent complex [[Mn(dmpe)(2)(C triple bond CSiMe(3))](2)(micro-C(4))][PF(6)] [12](+) is obtained by the reaction of 7 a with one equivalent of DBU (1,8-diazabicyclo[5.4.0]undec-7-ene). The relatively long-lived radical intermediate [Mn(dmpe)(2)(C triple bond CH)(C triple bond C*)] could be trapped as the Mn(I) complex [Mn(dmpe)(2)(C triple bond CH)(triple bond C-CO(2))] (14) by addition of an excess of TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy) to the reaction mixtures of species 2 and TBAF. The neutral dinuclear Mn(II)/Mn(II) compounds [[Mn(dmpe)(2)(C triple bond CR(3))](2)(micro-C(4))] (R = H, 11; R = SiMe(3), 12) are produced by the reduction of [11](+) and [12](+), respectively, with [FeCp(C(6)Me(6))]. [11](+) and [12](+) can also be oxidized with [Cp(2)Fe][PF(6)] to produce the dicationic Mn(III)/Mn(III) species [[Mn(dmpe)(2)(C triple bond CR(3))](2)(micro-C(4))][PF(6)](2) (R = H, [11](2+); R = SiMe(3), [12](2+)). Both redox processes are fully reversible. The dinuclear compounds have been characterized by NMR, IR, UV/Vis, and Raman spectroscopies, CV, and magnetic susceptibilities, as well as elemental analyses. X-ray diffraction studies have been performed on complexes 4 b, 7 b, 9, [12](+), [12](2+), and 14.  相似文献   

6.
Gray TG  Holm RH 《Inorganic chemistry》2002,41(16):4211-4216
The site-differentiated, cyanide-substituted hexanuclear rhenium(III) selenide clusters cis- and trans-[Re(6)Se(8)(PEt(3))(4)(CN)(2)] and [Re(6)Se(8)(PEt(3))(5)(CN)](+) have been prepared from heterogeneous reactions of the corresponding iodo clusters with AgCN in refluxing chloroform. Isolated yields are 68%, 46%, and 64% for cis-[Re(6)Se(8)(PEt(3))(4)(CN)(2)], trans-[Re(6)Se(8)(PEt(3))(4)(CN)(2)], and [Re(6)Se(8)(PEt(3))(5)(CN)](+), respectively. The new compounds are air- and water-stable and are characterized by X-ray diffraction crystallography, (31)P NMR and IR spectroscopies, and FAB mass spectrometry. In related work, the solvent exchange rates of two site-differentiated monosolvate clusters, [Re(6)Se(8)(PEt(3))(5)(MeCN)](SbF(6))(2) and [Re(6)Se(8)(PEt(3))(5)(Me(2)SO)](SbF(6))(2), in neat solvents were measured by (1)H NMR. These clusters are substitutionally inert; k approximately 10(-)(5)-10(-)(6) s(-)(1) at 318 K. Activation parameters indicate a dissociative ligand exchange mechanism; DeltaH() values obtained from least-squares fitting of temperature-dependent kinetics data exceed RT by a factor of ca. 50 over the temperature range studied. These results demonstrate that the substitutional lability encountered in a previous study of cluster photophysics (Gray, T. G.; Rudzinski, C. M.; Nocera, D. G.; Holm, R. H. Inorg. Chem. 1999, 38, 5932) cannot result from ground-state thermal reactions.  相似文献   

7.
Water- and air-stable complexes comprising the cis-[Re(CO)(2)](+) core can be synthesized from the (Et(4)N)[ReBr(2)(NCCH(3))(2)(CO)(2)] precursor . Complex showed distinctly different chemical and electronic behaviour compared to [ReBr(3)(CO)(3)](2-). Substituting the two bromides in with imidazole-like ligands or alpha,alpha'-diimines gave new complexes with potential applications in bioinorganic chemistry and photochemistry. The two acetonitrile ligands are very stably bound and could not be replaced. Under CO pressure, the uncommon complex mer-[ReBr(NCCH(3))(2)(CO)(3)] was formed from . The reaction of with the tetradentate ligand bis(2-pyridylmethyl)glycine (BPG) finally induced a four fold substitution at the metal center to form a [Re(CO)(2)(L(4))](+)-type complex.  相似文献   

8.
Treatment of [Os(bpy)(2)Cl(2)] (bpy = 2,2'-bipyridine) with 2-aminoethanethiolate was accompanied by air oxidation to give [Os(2-aminoethanesulfinato-N,S)(bpy)(2)](+) ([1](+)), which was further oxidized by air to be converted into [Os(2-iminoethanesulfinato-N,S)(bpy)(2)](+) ([2](+)) under photoirradiation. Complex [2](+) was reverted back to [1](+) by treatment with BH(4)(-).  相似文献   

9.
The cluster [W(3)S(4)H(3)(dmpe)(3)](+) (1) (dmpe=1,2-bis(dimethylphosphino)ethane) reacts with HX (X=Cl, Br) to form the corresponding [W(3)S(4)X(3)(dmpe)(3)](+) (2) complexes, but no reaction is observed when 1 is treated with an excess of halide salts. Kinetic studies indicate that the hydride 1 reacts with HX in MeCN and MeCN-H(2)O mixtures to form 2 in three kinetically distinguishable steps. In the initial step, the W-H bonds are attacked by the acid to form an unstable dihydrogen species that releases H(2) and yields a coordinatively unsaturated intermediate. This intermediate adds a solvent molecule (second step) and then replaces the coordinated solvent with X(-) (third step). The kinetic results show that the first step is faster with HCl than with solvated H(+). This indicates that the rate of protonation of this metal hydride is determined not only by reorganization of the electron density at the M-H bonds but also by breakage of the H-X or H(+)-solvent bonds. It also indicates that the latter process can be more important in determining the rate of protonation.  相似文献   

10.
Herein, we report a protocol for the synthesis of [(99m)TcO(3)(tacn)](+) ([1](+)) (tacn = 1,4,7-triazacyclononane) that is suitable for clinical translation. Bioconjugates containing pharmacophores ([TcO(NO(2)-Imi)(tacn)](+); [3](+)), artificial amino acids ([TcO(Fmoc-allyl-His)(tacn)](+); [5](+)), and glucose derivatives ([TcO(allyl-tetraacetylglucose)(tacn)](+); [7](+)) were synthesized by cycloaddition strategies and fully characterized ((99)Tc and (99m)Tc). These new technetium complexes are stable at neutral pH and demonstrate the potential and flexibility of the [3+2] cycloaddition labelling concept. In addition to the synthetic work, the first biodistribution studies of [1](+) and the small [3+2] cycloadduct [(99m)TcO(NO(2)-Imi)(tacn)](+) ([3](+)) were completed. The biodistribution studies suggest the stability of these complexes in vivo. Furthermore, it was demonstrated that the high hydrophilicity of the [(99m)TcO(3)(tacn)](+) building block is a complement to the complexes of the fac-{Tc(CO)(3)}(+) core.  相似文献   

11.
Kinetics of the overall reaction [Cr(3)O(O(2)CCH(3))(6)(H(2)O)(3)](+) + 3 urea right harpoon over left harpoon [Cr(3)O(O(2)CCH(3))(6)(urea)(3)](+) + 3H(2)O have been studied spectrophotometrically. Monophasic kinetics were observed in both directions. The reverse steps, of urea dissociation, were monitored using an analytical technique which permits direct determination of the concentration of liberated urea and does not require knowledge of extinction coefficients of intermediate species. Results imply that consecutive steps occur with rate constants in close to the statistical ratios of k(1):k(2):k(3) = 3:2:1 and k(-)(1):k(-)(2):k(-)(3) = 1:2:3. Rates indicate strong labilization of urea, compared to the case of mononuclear complex [Cr(urea)(6)](3+).  相似文献   

12.
Reaction of the incomplete cuboidal [W3S4H3(dmpe)3]+ cluster with a Pd(0) complex under a CO atmosphere produces a rare example of a heterodimetallic hydrido cluster of formula [W3PdS4H3(dmpe)3(CO)]+ ([1]+). There are not significant changes in the W-W bond lengths on going from the trinuclear to the tetranuclear cluster. The average W-W and W-Pd bond distances of 2.769[10] and 2.90[2] A, respectively, are consistent with the presence of single bonds between metal atoms. The heterodimetallic [1]+ complex is easier to oxidize and more difficult to reduce than its trinuclear precursor, which reflects the electron-donating capability of the Pd(CO) fragment. However, mechanistic studies on the reaction of [1]+ with acids show a lower basicity for this complex in comparison with that of its trinuclear precursor, so there is a major electron-density rearrangement within the cluster core upon Pd(CO) coordination. This rearrangement is also reflected in an unusual expansion of the sulfur tetrahedron within the W3PdS4 core with the concomitant elongation of the W-S bond distances by 0.04 A with respect to the analogous bond lengths in the trinuclear precursor. For those thermodynamically favored proton-transfer processes, the reaction mechanism of [1]+ with acids is quite similar to that observed for the incomplete trinuclear cluster, with only small changes in the rate constants. The reaction of [1]+ with HCl in acetonitrile/water mixtures produces [W3PdS4Cl3(dmpe)3(CO)]+ ([2]+) in two kinetically distinguishable steps. Proton transfer occurs in the initial step, in which the W-H bonds are attacked by the acid to yield dihydrogen-bonded adducts that are further attacked by an acetonitrile molecule to give [W3PdS4(CH3CN)3(dmpe)3(CO)]4+ and dihydrogen. The nature of processes involved in the second step are not well-understood with the present data, although it is very likely that these correspond to some secondary processes. In the third resolved step, the coordinated CH3CN ligands in [W3PdS4(CH3CN)3(dmpe)3(CO)]4+ are substituted by Cl- to afford the final [2]+ product. No reaction is observed between [1]+ and HCl in neat acetonitrile, whereas the product of the reaction of [1]+ with HBF4 or Hpts (pts- = p-toluenesulfonate) in this solvent is [W3PdS4(CH3CN)3(dmpe)3(CO)]4+. The reaction occurs in a single kinetic step with a first- (Hpts) or second-order (HBF4) dependence with respect to the acid. The first- and second-order acid dependences can be interpreted through the initial formation of dihydrogen adducts with one or two acid molecules, respectively.  相似文献   

13.
The reaction of W(2)(OOCCF(3))(4) with (CO)(9)Co(3)CCOOH and Na[OOCCF(3)] in a nonpolar solvent mixture leads to the formation of the cluster of clusters {[Na][W(2){OOCCCo(3)(CO)(9)}(2)(OOCCF(3))(4)(THF)(2)]}(2), 1, in 40% yield. The structure of 1.3C(6)H(5)CH(3) in the solid state corresponds to a dimer of W(2) dinuclear complexes (monoclinic P2(1)/c, a = 15.234(6) ?, b = 23.326(11) ?, c = 20.658(7) ?, beta = 102.46(3) degrees; V = 7,168(5) ?(3); Z = 4; R(F)() = 8.39%). Each W(2) unit is bridged by two cis cluster carboxylates, and the remaining four equatorial sites are occupied by monodentate [OOCCF(3)](-) ligands. The axial positions contain coordinated THF. The W(2) carboxylate is opened up (W-W distance of 2.449(2) ?) so that the free ends of the [OOCCF(3)](-) ligands on both W(2) carboxylate units can cooperate in chelating two Na(+) ions thereby forming a dimer of W(2) complexes. A distinctive EPR spectrum with g = 2.08 is consistent with each W(2) carboxylate being a mixed-valent W(II)-W(III) species. The reaction of W(2)(OOCCF(3))(4) with (CO)(9)Co(3)CCOOH in THF in the absence of Na[OOCCF(3)] leads to the expected diamagnetic W(II)-W(II) cluster carboxylate W(2){OOCCCo(3)(CO)(9)}(3)(OOCCF(3))(THF)(2), 3.  相似文献   

14.
[Sn(9)Pt(2)(PPh(3))](2)(-) (2) was prepared from Pt(PPh(3))(4), K(4)Sn(9), and 2,2,2-cryptand in en/toluene solvent mixtures. The [K(2,2,2-cryptand)](+) salt is very air and moisture sensitive and has been characterized by ESI-MS, variable-temperature (119)Sn, (31)P, and (195)Pt NMR and single-crystal X-ray diffraction studies. The structure of 2 comprises an elongated tricapped Sn(9) trigonal prism with a capping PtPPh(3), an interstitial Pt atom, a hypercloso electron count (10 vertex, 20 electron) and C(3)(v)() point symmetry. Hydrogenation trapping experiments and deuterium labeling studies showed that the formation of 2 involves a double C-H activation of solvent molecules (en or DMSO) with the elimination of H(2) gas. The ESI-MS analysis of 2 showed the K[Sn(9)Pt(2)(PPh(3))](1)(-) parent ion, an oxidized [Sn(9)Pt(2)(PPh(3))](1)(-) ion, and the protonated binary cluster anion [HSn(9)Pt(2)](1)(-). 2 is highly fluxional in solution giving rise to a single time-averaged (119)Sn NMR signal for all nine Sn atoms but the Pt atoms remain distinct. The exchange is intramolecular and is consistent with a rigid, linear Pt-Pt-PPh(3) rod embedded in a liquidlike Sn(9) matrix. [Sn(9)Ni(2)(CO)](3)(-) (3) was prepared from Ni(CO)(2)(PPh(3))(2), K(4)Sn(9), and 2,2,2-cryptand in en/toluene solvent mixtures. The [K(2,2,2-cryptand)](+) salt is very air and moisture sensitive, is paramagnetic, and has been characterized by ESI-MS, EPR, and single-crystal X-ray diffraction. Complex 3 is a 10-vertex 21-electron polyhedron, a slightly distorted closo-Sn(9)Ni cluster with an additional interstitial Ni atom and overall C(4)(v)() point symmetry. The EPR spectrum showed a five-line pattern due to 4.8-G hyperfine interactions involving all nine tin atoms. The ESI-MS analysis showed weak signals for the potassium complex [K(2)Sn(9)Ni(2)(CO)](1-) and the ligand-free binary ions [K(2)Sn(9)Ni(2)](1)(-), [KSn(9)Ni(2)](1)(-), and [HSn(9)Ni(2)](1)(-).  相似文献   

15.
Heating WTe(2), Te, and Br(2) at 390 degrees C followed by extraction with KCN gives [W(3)Te(7)(CN)(6)](2-). Crystal structures of double salts Cs(3.5)K{[W(3)Te(7)(CN)(6)]Br}Br(1.5).4.5H(2)O (1), Cs(2)K(4){[W(3)Te(7)(CN)(6)](2)Cl}Cl.5H(2)O (2), and (Ph(4)P)(3){[W(3)Te(7)(CN)(6)]Br}.H(2)O (3) reveal short Te(2)...X (X = Cl, Br) contacts. Reaction of polymeric Mo(3)Se(7)Br(4) with KNCSe melt gives [Mo(3)Se(7)(CN)(6)](2-). Reactions of polymeric Mo(3)S(7)Br(4) and Mo(3)Te(7)I(4) with KNCSe melt (200-220 degrees C) all give as final product [Mo(3)Se(7)(CN)(6)](2)(-) via intermediate formation of [Mo(3)S(4)Se(3)(CN)(6)](2-)/[Mo(3)SSe(6)(CN)(6)](2-) and of [Mo(3)Te(4)Se(3)(CN)(6)](2-), respectively, as was shown by ESI-MS. (NH(4))(1.5)K(3){[Mo(3)Se(7)(CN)(6)]I}I(1.5).4.5H(2)O (4) was isolated and structurally characterized. Reactions of W(3)Q(7)Br(4) (Q = S, Se) with KNCSe lead to [W(3)Q(4)(CN)(9)](5-). Heating W(3)Te(7)Br(4) in KCNSe melt gives a complicated mixture of W(3)Q(7) and W(3)Q(4) derivatives, as was shown by ESI-MS, from which E(3)[W(3)(mu(3)-Te)(mu-TeSe)(3)(CN)(6)]Br.6H(2)O (5) and K(5)[W(3)(mu(3)-Te)(mu-Se)(3)(CN)(9)] (6) were isolated. X-ray analysis of 5 reveals the presence of a new TeSe(2-) ligand. The complexes were characterized by IR, Raman, electronic, and (77)Se and (125)Te NMR spectra and by ESI mass spectrometry.  相似文献   

16.
The preparation of two new families of hexanuclear rhenium cluster complexes containing benzonitrile and phenyl-substituted tetrazolate ligands is described. Specifically, we report the preparation of a series of cluster complexes with the formula [Re(6)Se(8)(PEt(3))(5)L](2+) where L = benzonitrile, p-aminobenzonitrile, p-methoxybenzonitrile, p-acetylbenzonitrile, or p-nitrobenzonitrile. All of these complexes undergo a [2 + 3] cycloaddition with N(3)(-) to generate the corresponding [Re(6)Se(8)(PEt(3))(5)(5-(p-X-phenyl)tetrazol-2-yl)](+) (or [Re(6)Se(8)(PEt(3))(5)(2,5-p-X-phenyltetrazolate)](+)) cluster complexes, where X = NH(2), OMe, H, COCH(3), or NO(2). Crystal structure data are reported for three compounds: [Re(6)Se(8)(PEt(3))(5)(p-acetylbenzonitrile)](BF(4))(2)?MeCN, [Re(6)Se(8)(PEt(3))(5)(2,5-phenyltetrazolate)](BF(4))?CH(2)Cl(2), and [Re(6)Se(8)(PEt(3))(5)(2,5-p-aminophenyltetrazolate)](BF(4)). Treatment of [Re(6)Se(8)(PEt(3))(5)(2,5-phenyltetrazolate)](BF(4)) with HBF(4) in CD(3)CN at 100 °C leads to protonation of the tetrazolate ring and formation of [Re(6)Se(8)(PEt(3))(5)(CD(3)CN)](2+). Surprisingly, alkylation of the phenyl and methyl tetrazolate complexes ([Re(6)Se(8)(PEt(3))(5)(2,5-N(4)CPh)](BF(4)) and [Re(6)Se(8)(PEt(3))(5)(1,5-N(4)CMe)](BF(4))) with methyl iodide and benzyl bromide, leads to the formation of mixtures of 1,5- and 2,5-disubstituted tetrazoles.  相似文献   

17.
Reaction of AgBF(4), KNH(2), K(2)Se, Se, and [2.2.2]-cryptand in acetonitrile yields [K([2.2.2]-cryptand)](4)[Ag(4)(Se(2)C(2)(CN)(2))(4)] (1). In the unit cell of 1 there are four [K([2.2.2]-cryptand)](+) units and a tetrahedral Ag(4) anionic core coordinated in mu(1)-Se, mu(2)-Se fashion by each of four mns ligands (mns = maleonitrilediselenolate, [Se(2)C(2)(CN)(2)](2)(-)). Reaction of AgNO(3), Na(2)(mnt) (mnt = maleonitriledithiolate, [S(2)C(2)(CN)(2)](2)(-)), and [2.2.2]-cryptand in acetonitrile yields [Na([2.2.2]-cryptand)](4)[Ag(4)(mnt)(4)].0.33MeCN (2). The Ag(4) anion of 2 is analogous to that in 1. Reaction of AgNO(3), Na(2)(mnt), and [NBu(4)]Br in acetonitrile yields [NBu(4)](4)[Ag(4)(mnt)(4)] (3). The anion of 3 also comprises an Ag(4) core coordinated by four mnt ligands, but the Ag(4) core is diamond-shaped rather than tetrahedral. Reaction of [K([2.2.2]-cryptand)](3)[Ag(mns)(Se(6))] with KNH(2) and [2.2.2]-cryptand in acetonitrile yields [K([2.2.2]-cryptand)](3)[Ag(mns)(2)].2MeCN (4). The anion of 4 comprises an Ag center coordinated by two mns ligands in a tetrahedral arrangement. Reaction of AgNO(3), 2 equiv of Na(2)(mnt), and [2.2.2]-cryptand in acetonitrile yields [Na([2.2.2]-cryptand)](3)[Ag(mnt)(2)] (5). The anion of 5 is analogous to that of 4. Electronic absorption and infrared spectra of each complex show behavior characteristic of metal-maleonitriledichalcogenates. Crystal data (153 K): 1, P2/n, Z = 2, a = 18.362(2) A, b = 16.500(1) A, c = 19.673(2) A, beta = 94.67(1) degrees, V = 5941(1) A(3); 2, P4, Z = 4, a= 27.039(4) A, c = 15.358(3) A, V = 11229(3) A(3); 3, P2(1)/c, Z = 6, a = 15.689(3) A, b = 51.924(11) A, c = 17.393(4) A, beta = 93.51(1) degrees, V = 14142(5) A(3); 4, P2(1)/c, Z = 4, a = 13.997(1) A, b = 21.866(2) A, c = 28.281(2) A, beta = 97.72(1) degrees, V = 8578(1) A(3); 5, P2/n, Z = 2, a = 11.547(2) A, b = 11.766(2) A, c = 27.774(6) A, beta = 91.85(3) degrees, V = 3772(1) A(3).  相似文献   

18.
The synthesis, molecular structures, and magnetic and optical properties of [Mn(32)Se(14)(SePh)(36)(PnPr(3))(4)] and [Na(benzene-15-crown-5)(C(4)H(8)O)(2)](2)[Mn(8)Se(SePh)(16)] have been investigated which are the first examples of manganese chalcogenide cluster complexes, despite known manganese oxo compounds, which comprise more than four manganese atoms.  相似文献   

19.
The acid-base reactivity of MS(2)(dmpe)(2), where M = Mo (1) and W (2) and dmpe = Me(2)PCH(2)CH(2)PMe(2), was examined. Compounds 1 and 2 arise via the one-pot reaction of (NH(4))(2)MS(4) and dmpe. Protonation of these species gives the stable salts [MS(SH)(dmpe)(2)]X. The pK(a)'s of the Mo and W compounds are estimated to be 16.5 and 15.5, respectively. Protonation causes the M=S distances to diverge from 2.24 A to 2.06 and 2.57 A, whereas the Mo-P distances do not change appreciably. (1)H and (31)P NMR studies for [1H]BAr(F)(4) reveal that the proton exchange is competitive with the NMR time scale; at low temperatures, individual signals for both the parent disulfide and its conjugate acid can be observed. Treatment of 1 with excess HOTf liberates H(2)S to afford [MoS(OTf)(dmpe)(2)]OTf, which forms an adduct with CD(3)CN and regenerates 1 upon treatment with SH(-)/Et(3)N solutions. Consistent with its ready protonation, complex 1 is methylated, and the use of excess MeOTf gives [MoS(OTf)(dmpe)(2)](+) and Me(2)S in a rare example of double alkylation at a sulfido ligand.  相似文献   

20.
Xu Z  Lin Z 《Inorganic chemistry》1996,35(13):3964-3966
Ab initio calculations for the [Y(H(2)O)(4)(BH(4))(2)](+) complex, a model of [Y(THF)(4)(BH(4))(2)](+), have been carried out to study the metal-BH(4)(-) ligand interactions. Our calculations for various isomers with different BH(4)(-) coordination modes allow us to explore the electronic and electrostatic interactions in details. It is found that both electronic and electrostatic effects are of almost equal importance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号