首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 461 毫秒
1.
Abstract— In the first part of this study the spectral properties of pheophytin a in rigid, unstretched anhydrous polyvinyl alcohol and nitrocellulose films have been studied in order to establish the influence of the central magnesium atom on the state of chlorophylls in polymer systems. The absorption, fluorescence, excitation spectra and fluorescence intensity decays in the polymer films and in the solutions from which they are cast are reported. It is shown that pheophytin a aggregate formation is influenced by the nature of the polymer system. An aggregate of pheophytin a is found in polyvinyl alcohol films over a wide concentration range. On the other hand, pheophytin a exists in the monomeric form in unstretched nitrocellulose films at concentrations below 6 × 10-6 mol/g.
In the second part of this work, the influence of stretching of the films on the state and distribution of embedded chlorophyll pigments, is described. Here we show that the chlorophyll a molecules are found to undertake a heterogenous distribution in polyvinylalcohol matrices, since stretching partially disrupts the pocket-like structures present in unstretched films. In contrast, chlorophyll a and pheophytin a molecules can be embedded in a monomeric state in nitrocellulose matrices and moreover they remain homogeneously distributed upon stretching. The chlorophyll/nitrocellulose system is concluded to be a useful model system for studies of donor-donor energy transfer processes.  相似文献   

2.
Abstract— In this paper we describe the determination of the orientation of the absorption and emission transition dipoles of chlorophyll a and pheophytin a in their molecular frame. For this purpose we have embedded the pigments in anhydrous nitrocellulose films with a concentration of 2 × 10-7 mol/g. We have shown previously that under these conditions the pigments are in a purely monomeric state, are distributed uniformly both before and after stretching and that no intermolecular energy transfer among the molecules takes place.
Using a combination of steady-state anisotropy experiments on unstretched films and angle-resolved fluorescence depolarization measurements on stretched films, we obtain the orientation of the transition dipole moments of both pigments in their molecular frame and the orientational distribution function of the molecules relative to the stretching direction of the film.
The steady-state anisotropy measurements indicate that chlorophyll a has two distinct emission dipole moments and that excitation in the Soret-region results in simultaneous excitation of two or more absorption transition dipole moments. On the other hand, excitation in the QY-band involves only a single dipole moment. The directions of the transition dipole moments in the molecular frame are obtained from the angle-resolved measurements. Pheophytin a also exhibits two emission dipole moments, but the angle between them is much smaller than that between the corresponding dipoles for chlorophyll a . As a consequence the dipole moments contributing to the Soret-region could not be resolved and only an effective absorption transition dipole moment in the Soret-region is extracted.  相似文献   

3.
Abstract— Model systems for the study of energy transfer processes are useful for the elucidation of the various factors governing the mechanism of energy transfer in photosynthetic systems. Here we describe the characterization of two systems, consisting of chlorophyll a incorporated in anhydrous nitrocellulose and polyvinylalcohol films. First, optical spectroscopy and time-resolved fluorescence techniques are used to characterize the state of the chlorophyll molecules in the films. We find that in nitrocellulose films the state of chlorophyll a depends strongly on the ratio of nitrocellulose to dimeth-ylsulfoxide in the solutions from which the films are cast. The state of chlorophyll a in polyvinylalcohol films does not depend on the amount of polymer originally dissolved in dimethylsulfoxide. In these films the pigment is monomeric at low concentrations of chlorophyll a, but aggregates are formed at much lower concentrations than in nitrocellulose. The latter fact is explained by the existence of pockets in polyvinylalcohol, leading to high local concentrations.
To further test the suitability of the nitrocellulose polymer films as model systems for energy transfer processes, time-resolved fluorescence anisotropy profiles are measured in dependence of the concentration of pigments in the matrix. Fits of the observed decay profiles to the predicted decay show good correspondence, as long as no traps are present. Furthermore, the fitted decay times yield the correct value of the Forster radius R0 as compared to the value obtained spectroscopically. We thus conclude that the chlorophyll a-nitrocellulose system can be very appropriate for the study of energy transfer processes between photosynthetic pigment, since the pigments are uniformally distributed in the matrix.  相似文献   

4.
The migration and diffusion modulated excitation energy transfer has been studied in a new dye pair 7-diethylamino-4-methylcoumarin (donor) to 3,3'-dimethyloxacarbocyanine iodide (acceptor) by steady-state and picosecond time-resolved spectroscopy. To reduce the artifact of self-absorption, at high donor concentrations, the time-resolved studies have been carried out in thin films of polyvinyl alcohol (solid matrix) and in methanol (liquid phase) at front-face geometry of excitation. The Forster-type (nonradiative) energy transfer [Discuss. Faraday Soc. 27, 7 (1959)] takes place directly from donor to acceptor in case of solid matrix, while Yokota-Tanimoto model [J. Phys. Soc. Jpn. 22, 779 (1967)] for diffusion has been found to be operating in the liquid phase. It has been found here that the high interaction strength between donor and acceptor molecules as compared to that among donors masks the effect of energy migration and diffusion at high donor concentrations. The rate and efficiency of energy transfer increase with increasing the acceptor concentration. This has been confirmed by the study of acceptor kinetics.  相似文献   

5.
Polarized absorption, photoacoustic, fluorescence excitation and fluorescence emission spectra of phycobilisomes were measured when embedded in polyvinyl alcohol films. The phycobilisomes were isolated from the following organisms: Anabaena cylindrica, Nostoc punctiforma and Synechococcus elongatus. The ratio of photoacoustic spectra to absorption was taken as a measure of thermal dissipation of excitation energy. The isotropic samples and those oriented by the film stretching were investigated. The stretching of the sample strongly influences the efficiency of excitation energy transfer occurring among biliproteins in phycobilisomes, as is seen from the dramatic changes in the fluorescence and thermal dissipation spectra. The effect of stretching the film depends on the shape of phycobilisomes and on the strength of interactions between biliproteins in phycobilisomes.  相似文献   

6.
Abstract— Confocal fluorescence lifetime imaging has been used to establish the microscopic disposition of chlorophyll molecules in polymer matrices. This study provides a direct test of models proposed on the basis of fluorescence measurements on bulk Alms. We show that whereas chlorophyll b molecules are uniformly distributed in nitrocellulose matrices, they form pocket-like structures in polyvinyl alcohol matrices. The shape of the structures, seen as bright fluorescent spots on a uniform background, is modified on stretching the polyvinyl alcohol matrix.  相似文献   

7.
Organic room-temperature phosphorescence (RTP) materials are very attractive, but there is still a challenge to achieve RTP for their practical applications under visible light excitation (λ > 400 nm) because of the implement for the most organic RTP is under ultraviolet light. Herein, a simple tactics for inhibiting the vibrational dissipation of three amorphous phenanthroline derivatives by doping them into polyvinyl alcohol (PVA) matrix was utilized to afford visible-light excitation RTP. By using this method, on account of the mutual H-bonding and confinement effect with PVA matrix, a series of organic RTP materials with blue-green phosphorescence emission were obtained under visible-light excitation. The afterglow colors of RTP materials can be adjusted by co-doping the available fluorescence dyes (RhB or Rh6G) into the PVA films through a triplet-to-singlet Förster resonance energy transfer. However, the H-bonding is easily broken by water molecules resulting in the RTP phenomenon disappears. Hence, Aphen-epoxy resin composite system was constructed to overcome this drawback. It is shown that the composite still has good phosphorescence properties after soaking in water for 7 days. The superior RTP of the amorphous phenanthroline derivatives in processable polymer matrices endows these materials with a highly potential for the night warning clothing coating and information encryption.  相似文献   

8.
Nonphotochemical quenching is the photoprotection mechanism by which the excess excitation energy absorbed by the light harvesting complex LHCII is dissipated through the protein scaffold as heat. Using the quenched structure of LHCII obtained from crystallographic experiments, the potential quenching of photoexcited excitons by aggregates of chlorophylls is theoretically investigated. In monomeric LHCII there is a hierarchy of length scales resulting in a hierarchy of energy scales that determine the interpigment direct Coulomb coupling. We propose a model whereby eight chlorophylls are coupled quantum mechanically into four dimers, with exciton transfer between these dimers and the remaining six single chlorophylls proceeding incoherently via Forster transfer. The chlorophyll dimer Chl a604-Chl b606 possesses a quasi-parallel geometry, resulting in a weakly dipole-allowed low-lying excited state. This weakly allowed state is accessible via exciton transfer to a higher, strongly allowed state followed by fast vibrational relaxation. This parallel, H-type aggregate can potentially function as an exciton trap. Calculated Forster transfer rates between single chlorophylls and chlorophyll dimers are used in a simulation of exciton transfer in monomeric LHCII to explore this possibility. It is found that Chl a604-Chl b606 has a short-lived enhanced population (on the time scale of approximately picoseconds), but not a long-time resident population. The fluorescence quantum yield of the model was calculated to be phi F = 0.38. Comparison of this result with phi F approximately 0.26 for unquenched LHCII in dilute solution and phi F approximately 0.06 for the highly quenched LHCII crystal reveals that the proposed model does not account for the quenching observed in the LHCII crystal. We therefore conclude that the formation of chlorophyll dimers is not the main cause of excitonic NPQ in LHCII.  相似文献   

9.
A model is proposed to explain the kinetics of fluorescence and energy transfer in thin films of polyvinyl carbazole based on the migration of monomer excitons with activator molecules, dimers, and excimer forming sites competing as traps for the exciton energy.  相似文献   

10.
Abstract— Black lipid membranes (BLM) were prepared from extracts of Chlorella and spinach chloroplasts. Excitation spectra of the 730 nm fluorescence of chlorophyll a in the BLM contained peaks identified as due to carotenoids and which therefore indicate sensitization of the chlorophyll fluorescence by them. The efficiency of this energy transfer was evaluated by comparison of the actual excitation spectra with those corresponding to 0 and 100 per cent transfer efficiency. Efficiencies were of the order of 40–50 per cent in BLM, but only 10 per cent in pigment solutions, when the mean distance between pigment molecules was 23 Å in both systems. The fluorescence quantum yield of chlorophyll a in such solutions was only 2 per cent of that found in BLM. Enhancement of energy transfer in BLM is considered to be mainly due to suppression of competing deactivation processes of excited carotenoid states, such as diffusional quenching by ground-state molecules and internal conversion. Favorable orientation of pigment molecules in the BLM constitutes a further enhancement factor.  相似文献   

11.
Addition of arenes and arenesulfonic acids to optical bleaching agents in the liquid system 2-propanol-water or in a polyvinyl alcohol matrix affects the rate of their photodecomposition via T-T transfer of the electronic excitation energy. The relative arrangement of the triplet levels of the luminophore and added compound is responsible for acceleration or deceleration of the process.  相似文献   

12.
Polarized steady-state fluorescence and fluorescence excitation spectra as well as time-resolved fluorescence for B-phycoerythrin (B-PE) from red algae, Porphyridium cruentum, embedded in polyvinyl stretched films were measured. The lifetimes of polarized fluorescence were analyzed using exponential components and fractal models. The interactions between various chromophores of the pigment-protein complexes investigated were discussed. The anisotropy of fluorescence excitation spectra differs from the anisotropy of absorption spectra and depends on the wavelength of observation. This shows that differently oriented chromophores take part in various paths of excitation energy transfer (ET) or change their excitation into heat with various efficiencies (or both). Also, analysis of time-resolved fluorescence measured in various spectral regions gives different polarized components of emission. Fractal analysis of lifetimes, done under supposition of the Foerster resonance ET mechanism, suggests different arrangements of energy donors and acceptors for molecules absorbing in different spectral regions. It shows that several fractions of differently oriented "forms" of chromophores exhibiting different spectral properties occur in B-PE complexes. Small changes in the orientation of the chromophores can be followed by modification of the path of excitation energy migration. Based on the results obtained a new reorientational mechanism of the State 1 --> State 2 transition was proposed: Even small conformational modifications of biliproteins, which could be caused in vivo by the change in the conditions of preillumination of bacteria, are able to modify the path of excitation ET. Such a reorientation may be responsible for the change in the partition of biliprotein excitation energy between photosystem II (PSII) and PSI (State 1 --> State 2 transition). The proposed mechanism needs further verification by the investigation of whole bacteria cells.  相似文献   

13.
Abstract— Semiconductors with a sufficiently large energy gap, in contact with an electrolyte, can be used as electrodes for the study of electrochemical reactions of excited molecules. The behavior of excited chlorophyll molecules at single crystal ZnO-electrodes has been investigated. These molecules inject electrons from excited levels into the conduction band of the electrode, thus giving rise to an anodic photocurrent. The influence of various agents on this electron transfer has been studied. In the presence of suitable electron donors (e.g., hydroquinone, phenylhydrazine) in the electrolyte chlorophyll molecules, absorbing quanta, mediate the pumping of electrons from levels of the reducing agents into the conduction band of the semiconductor-electron acceptor. The electron capture by the semiconductor electrode is irreversible, when an adequate electrochemical gradient is provided in the electrode surface. Some properties of excited chlorophyll at semiconductor electrodes (unidirectional electron transfer, highly efficient charge separation, chlorophyll as electron pump and able to convert electronic excitation into electric energy) show similarity to the behavior of chlorophyll in photosynthetic reaction centers.  相似文献   

14.
–Time-resolved fluorescence spectra in the ps time range were measured on phycobilisome (PBS) embedded in poly(vinyl alcohol) films. The cyanobacterium Tolypothrix tenuis was used as a source of PBS because the pigment composition and the structure of the PBS are well defined. Isotropic PBS in the unstretched film and PBS uniaxially oriented in the stretched film were investigated. Diameters of PBS hemidiscs were oriented parallel to the film-stretching direction. The time-resolved fluorescence spectra of the unstretched sample and of the two polarized components in the stretched samples showed several differences in the rise and decay. The delay time, estimated from the time span between the maximum laser pulse and maximal intensity of the phycocyanin and allophycocyanin fluorescence, was much longer than that reported in the aqueous media. This suggests occurrence of a higher thermal deactivation of PBS in polymer film than in aqueous media. The excitation energy transfer from excited phycocrythrin to allophycocyanin was more efficient in the unstretched than in the stretched samples, and it was greater in the parallel polarized component of the stretched sample than in the perpendicular component. The present results are in agreement with a previous suggestion which states that there are two independent pathways of excitation energy transfer in PBS and that there is more than one final emitter of fluorescence. The molecules taking part in various pathways of energy transfer differ in their orientation within PBS.  相似文献   

15.
Abstract— The goal of the present work was to create and investigate a model system, using a dye imbedded into polymer structure, and to examine characteristics which would provide low heat dissipation and excitation diffusion characteristics approaching those seen in the "antenna" of the photosynthetic apparatus. Zinc tetraphenoxyphtalocyanine served as a dye, and different types of polyvinyl pyridine polymers and polystyrene were used as polymer matricies. Measurements of the absorption, fluorescence and Raman spectra of the polymeric films with dye molecules show that along with Van der Waals interactions of the dye molecules with the side aromatic groups of the polymer there is a coordination interaction between the metal atoms of Zinc phtalocyanine and the nitrogen atoms of the pyridine group of the polymer. A model system shows low heat losses of excitation energy, when the dye concentration does not exceed 10-2 M (mean distances between molecules of about 34 Å). Electronic excitation diffusion characteristics appeared to be close to those of the light harvesting antenna of the photosynthetic apparatus, indicating high efficiency of the energy migration in it.  相似文献   

16.
In mixed monolayers with purified chloroplast glycolipids and other colorless lipids, chlorophyll a fluorescence exhibits a decrease in quantum efficiency with increasing chlorophyll concentration. The fluorescence, which is strongly polarized in dilute films, becomes progressively depolarized as the area fraction of chlorophyll increases, and it is completely depolarized in a pure chlorophyll a monolayer. The observed behavior is consistent with an inductive resonance mechanism of energy transfer among the chlorophyll molecules with a critical transfer distance of 20–90 Å, depending on the model chosen for the energy transfer mechanism. The purified glycolipids–mono-and digalactosyl diglycerides and sulfoquinovodiglyceride–separately form stable, compressible monolayers of the liquid-expanded type on an aqueous subphase and in an atompshere of nitrogen. At maximum compression the three glycolipids occupy areas of 55, 80 and 47 A2-molecule-1, respectively, in the monolayer. Mixed monolayers of chlorophyll a with, separately, the monogalactolipid and the sulfolipid behave upon compression as two-dimensional solutions. The fluorescence polarization at high chlorophyll concentrations in mixed monolayers indicates that several of the lipid diluents facilitate local ordering of the pigment molecules.  相似文献   

17.
Halobenzenes and sodium salts of halobenzenesulfonic acids decelerate photochemical degradation of optical whiteners in aqueous 2-propanol or in a polyvinyl alcohol matrix owing to T-T transfer of the electronic excitation energy from the substrate to the additive and also to the quenching effect of the heavy atom of the additive. In all the cases, the efficiency of deceleration of luminophore photodegradation grows in going from chloro to bromo and then iodo derivatives.  相似文献   

18.
Energy transfer properties of novel coumarin-perylene bisimide dendrimer are studied by means of steady state and time-resolved UV/vis spectroscopy. At low donor excitation density fast (transfer rate approximately 10 ps(-1)) and efficient (quantum yield approximately 99.5%) donor-acceptor energy transfer is observed. The random distributions of donor-acceptor orientations and distances result in nonexponential energy transfer kinetics. The energy transfer remains independent of excitation density up to densities corresponding to one absorbed photon per 10 dendrimer molecules. At higher excitation densities the transfer rate is found to increase due to excitation of multiple donors per dendrimer. Control of the donor-acceptor energy transfer rate is achieved by pre-excitation of the acceptor and monitored by prepump-pump-probe experiments, which show that the energy transfer rate can be decreased by a factor of 2. The relative orientations of transition dipole moments in the donor and acceptor molecules are found to be one of the key factors determining the energy transfer dynamics at high excitation densities.  相似文献   

19.
The energy transfer between dye molecules and the mobility of the corresponding excitons are investigated in polymethyl methacrylate films highly doped with perylene bisimide dyes. The dynamics is measured by group delay corrected, femtosecond broad-band spectroscopy revealing the transfer route via absorption changes that are specific for the participating species. In films doped with 0.14 M perylene orange an ultrafast homotransfer between the dye molecules is found by analyzing the loss of the excitation-induced anisotropy. The process exhibits a stretched exponential time dependence which is characteristic for F?rster energy transfer between immobilized molecules. The transfer time is 1.5 ps for an average transfer distance of 2.3 nm and results in a high mobility of the optically generated excitons. In addition, we find that the excitons move to perylene orange dimers, which have formed in low concentration during the sample preparation. The observed energy transfer time is slightly shorter than expected for a direct F?rster transfer and indicates that exciton migration by multistep transfer between the monomers speeds up the transport to the dimers. In samples doped with perylene orange and perylene red heterotransfer to perylene red takes place with transfer times down to 600 fs. The mechanism is F?rster transfer as demonstrated by the agreement with calculations assuming electric dipole interaction between immobilized and statistically distributed donor and acceptor units. The model predicts the correct time dependence and concentration scaling for highly doped as well as diluted samples. The results show that ultrafast exciton migration between dye molecules in highly doped matrixes is an attractive and efficient mechanism to transport and collect energy in molecular systems and organic electronic devices. Further optimization should lead to a loss-free transport over distances typical for the thickness of active layers in these systems.  相似文献   

20.
Using time-resolved in μS range luminescence spectroscopy, we observed at 20°C the emission of chlorophyll a, pheophytin a and chlorophyll a-lutein mixture solutions. This delayed emission exhibits several maxima in the650–750 nm region. The positions and kinetics of decay of delayed emission bands depend on chlorophyll concentration, and vary as a result of pheophytinization and addition of lutein. Our results can be explained by supposition that upon excitation, charge transfer species are formed in various pigment complexes. The back electron transfer reactions yield chlorophyll excited singlet states contributing to observed delayed emission. Delay in emission seems to be due also to the trapping of excitation on the triplet states of various forms of pigment and its detrapping with the participation of thermal energy followed by energy transfer to the forms of pigment characterized by different decay times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号