首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Wang Y  Lin Q  Mukherjee T 《Lab on a chip》2004,4(5):453-463
This paper presents a system-oriented model for analyzing the dispersion of electrophoretic transport of charged analyte molecules in a general-shaped microchannel, which is represented as a system of serially connected elemental channels of simple geometry. Parameterized analytical models that hold for analyte bands of virtually arbitrary initial shape are derived to describe analyte dispersion, including both the skew and broadening of the band, in elemental channels. These models are then integrated to describe dispersion in the general-shaped channel using appropriate parameters to represent interfaces of adjacent elements. This lumped-parameter system model offers orders-of-magnitude improvement in computational efficiency over full numerical simulations, and is verified by results from experiments and numerical simulations. The model is used to perform a systematic parametric study of serpentine channels consisting of a pair of complementary turn microchannels, and the results indicate that dispersion in a particular turn can contribute to either an increase or decrease of the overall band broadening. The efficiency and accuracy of the system model is further demonstrated by its application to general-shaped channels that occur in practice, including a serpentine channel with multiple complementary turns and a multi-turn spiral-shaped channel. The results indicate that our model is an accurate and efficient simulation tool useful for designing optimal electrophoretic separation microchips.  相似文献   

2.
The objective of this study is to explore an approach for analyzing negatively charged proteins using paper‐based cationic ITP. The rationale of electrophoretic focusing the target protein with negative charges under unfavorable cationic ITP condition is to modify the electrophoretic mobility of the target protein through antigen‐antibody immunobinding. Cationic ITP was performed on a paper‐based analytical device that was fabricated using fiberglass paper. The paper matrix was modified with (3‐aminopropyl)trimethoxysilane to minimize sample attraction to the surface for cationic ITP. Negatively charged BSA was used as the model target protein for the cationic ITP experiments. No electrophoretic mobility was observed for BSA‐only samples during cationic ITP experimental condition. However, the presence of a primary antibody to BSA significantly improved the electrokinetic behavior of the target protein. Adding a secondary antibody conjugated with amine‐rich quantum dots to the sample further facilitated the concentrating effect of ITP, reduced experiment time, and elevated the stacking ratio. Under our optimized experimental conditions, the cationic ITP‐based paper device electrophoretically stacked 94% of loaded BSA in less than 7 min. Our results demonstrate that the technique has a broad potential for rapid and cost‐effective isotachphoretic analysis of multiplex protein biomarkers in serum samples at the point of care.  相似文献   

3.
The use of isotachophoretic (ITP) sample focusing to improve the detection limits for the analysis of charged compounds in capillary electrochromatography (CEC) is described. A coupled-column set-up was used with a 220-microm inner diameter capillary, in which counterflow ITP focusing was performed, connected via a T-junction to a 75-microm inner diameter CEC capillary. As is illustrated, the use of ITP focusing resulted in a dramatic reduction of the sample concentration detection limits. To demonstrate the performance of the ITP-CEC combination, several cationic low-molecular mass compounds in a plasma and urine matrix are analysed using UV-absorbance and mass spectrometric detection. A linear calibration curve was constructed over three decades and detection limits in the low nmol/l range were found for academic samples, using UV-absorbance detection.  相似文献   

4.
An online method involving transient electrokinetic dosing and ITP with neutralization reaction boundary (NRB) and/or carrier ampholyte-free isoelectric focusing (CAF IEF) was developed for the preconcentration, preseparation, and analytical determination of glyphosate in aqueous samples containing low concentrations of the analyte of interest. Various parameters were investigated in the framework of an optimization study with the aim of achieving the maximum concentration limit of detection (cLOD) decrease in minimum time. The proposed method used CAF IEF and/or ITP with NRB. The sample was dosed to the column on the stationary reaction boundary (CAF IEF) and/or moving reaction boundary (ITP with NRB), whereat a sharp pH step exists. Here, charge reversal was due to the ampholytes, and/or acid accumulation occurred because of charge loss. Similarly, the accumulated sample was mobilized with TE and analyzed using classical ITP in the second analytical column. Glyphosate (GLY), the analyte of interest, was chosen as a model substance for ITP with NRB and preconcentration as well as focusing preconcentration and CAF IEF using the asymmetric purpose-built NRB. On one side of the asymmetric boundary was the zone of acidic pH; while the opposite side comprised a neutral/basic non-conductive zone of the ampholyte—in this case, GLY. Such an arrangement enables the use of a lower pH on the acidic side, which allows the focusing of strongly acidic ampholytes and the accumulation of weak acids. The electrolyte composition and the dosing time were optimized, and a 14-fold accumulation was achieved in 25 min compared to that by classical ITP and a 180-fold accumulation was achieved through CAF IEF and preconcentration with a glyphosate sample. Both methods are simple and can be conducted using all commercial ITP systems.  相似文献   

5.
When particles differing in size or charge are mixed and cast, vertical segregation is an inevitable phenomenon in the produced films. Apart from the Peclet number, which is the ratio of evaporation to diffusion rates, particle interactions play a crucial role in determining the distribution of particles in the dried films. Trueman et al. (1) developed a model for vertical segregation of particles during drying. Their numerical solution assumed that the chemical potentials were determined entirely by entropy. We report the effect of particle interactions in various systems: (i) charged particles with different Peclet numbers and (ii) charged particles with the same Peclet numbers. An experimental study has also been carried out for particles with Peclet numbers straddling unity; the experimental results conform with the behavior predicted theoretically.  相似文献   

6.
Shihabi ZK 《Electrophoresis》2002,23(11):1612-1617
We show that many water miscible organic solvents such as acetonitrile, acetone and small alcohols can function as a terminating ion in transient isotachophoresis, which leads to sample concentration on the capillary. It is suggested that this method could be termed transient "pseudo-isotachophoresis" (pseudo-ITP). Because of their low conductivity, these water miscible organic solvents provide the high field strength necessary for band sharpening similar to that provided by the terminating ion. Salts, when present in such samples act briefly as leading ions, migrating rapidly in the organic solvent until they are slowed at the interface of the separation buffer. When the organic solvents are added to the sample, both the migrations as well as the stacking of the analytes are affected by the concentration of salts (leading ions) in the sample, similar to that observed in isotachophoresis. Our results show that this type of stacking offers good reproducibility and reliability for practical analysis. In practice, pseudo-ITP stacking is much easier to perform compared to that of true ITP with several added practical advantages as discussed.  相似文献   

7.
Design and optimization of on-chip capillary electrophoresis   总被引:1,自引:0,他引:1  
We present a systematic, experimentally validated method of designing electrokinetic injections for on-chip capillary electrophoresis applications. This method can be used to predict point-wise and charge-coupled device (CCD)-imaged electropherograms using estimates of species mobilities, diffusivities and initial sample plug parameters. A simple Taylor dispersion model is used to characterize electrophoretic separations in terms of resolution and signal-to-noise ratio (SNR). Detection convolutions using Gaussian and Boxcar detector response functions are used to relate optimal conditions for resolution and signal as a function of relevant system parameters including electroosmotic mobility, sample injection length, detector length scale, and the length-to-detector. Analytical solutions show a tradeoff between signal-to-noise ratio and resolution with respect to dimensionless injection width and length to the detector. In contrast, there is no tradeoff with respect to the Peclet number as increases in Peclet number favor both SNR and separation solution (R). We validate our model with quantitative epifluorescence visualizations of electrophoretic separation experiments in a simple cross channel microchip. For the pure advection regime of dispersion, we use numerical simulations of the transient convective diffusion processes associated with electrokinetics together with an optimization algorithm to design a voltage control scheme which produces an injection plug that has minimal advective dispersion. We also validate this optimal injection scheme using fluorescence visualizations. These validations show that optimized voltage scheme produces injections with a standard deviation less than one-fifth of the width of the microchannel.  相似文献   

8.
Beckers JL 《Electrophoresis》2000,21(14):2788-2796
A sample stacking procedure to which a specific combination of electrolyte solutions is applied is isotachophoresis (ITP) superimposed on capillary zone electrophoresis (CZE), a so-called ITP/CZE system. In ITP/CZE some components migrate in an ITP fashion on top of a background electrolyte, and the other analytes migrate in a zone electrophoretic manner. For such a system, the leading electrolyte consists of a mixture of an ionic species, L1, of high mobility (the leading ion of the ITP system), an ionic species, L2, of low mobility (the coions of the CZE system), and a buffering counter-ionic species, whereas the terminating solution only contains the ionic species L2 and the buffering counterions. The zones of the components migrating in the ITP/CZE mode are sharp owing to the self-correcting properties of the zones and the concentrations of the L1 ions of the system. Mobility windows can be calculated, indicating which ions can migrate in the ITP/CZE mode. In this article mobility windows are calculated by applying both strong and weak acids as L1 and L2 ions and it appears that mobility windows can be optimized by chosing different ratios of L1 and L2 as well as different pH values. It is possible to construct very narrow mobility windows, and thereby choose which component of a sample solution can be concentrated, and to what concentration, in a very selective way. The big advantage of ITP/CZE compared with applications such as transient ITP and transient stacking is that the stacked sample ionic species migrate in the ITP mode during the whole experiment; furthermore, they do not destack. Experimentally obtained electropherograms validate the calculated mobility windows for the ITP/CZE mode.  相似文献   

9.
Free radical polymerization in microfluidic devices modeled with the help of numerical simulations is discussed. The simulation method used allows the simultaneous solvation of partial differential equations resulting from the hydrodynamics, thermal and mass transfer (convection, diffusion and chemical reaction). Three microfluidic devices are modeled, two interdigital multilamination micromixers respectively with a large and short focusing section, and a simple T-junction followed by a microtube reactor together considered as a bilamination micromixer with a large focusing section. The simulations show that in spite of the heat released by the polymerization reaction, the thermal transfer in such microfluidic devices is high enough to ensure isothermal conditions. Moreover, for low radial Peclet number, microfluidic devices with a large focusing section can achieve better control over the polymerization than a laboratory scale reactor as the polydispersity index obtained is very close to the theoretical limiting value. As the characteristic dimension of the microfluidic device increases, i.e. for high radial Peclet number, the reactive medium cannot be fully homogenized by the diffusion transport before leaving the system resulting in a high polydispersity index and a loss in the control of the polymerization.  相似文献   

10.
A feasibility study was performed using zone electrophoresis (ZE) coupled on‐line with isotachophoresis (ITP) sample pretreatment on a poly(methyl methacrylate) column‐coupling chip with integrated conductivity detection for direct determination of drugs in serum. Valproic acid (an antiepileptic drug), having a therapeutic range of 0.35–0.69 mmol/L (50–100 mg/L), was a test analyte while reference serum samples served as proteinaceous matrices. ITP provided in the ITP‐ZE combination a multitask sample pretreatment: (1) separation of the analyte from the serum matrix and its concentration into a narrow ITP band, (2) removal of the matrix constituents migrating in the ITP stack from the separation compartment of the chip, (3) ITP stacking of the drug released on a continuous electrophoretic decomposition of the drug‐protein complex. A high sample loadability, closely linked with the use of ITP in the first separation stage, made it possible to inject diluted serum samples with the aid of a 0.95 μL sample channel of the chip. Consequently, a 1–2 μmol/L concentration limit of quantitation for valproate from the response of the conductivity detector in the ZE stage of the combination was reached. The drug could be reliably determined in less than 10 minutes also in instances when its concentration in serum was below the lower value of the therapeutic range. 90–94% recoveries of valproate from serum samples were obtained in its direct ITP‐ZE determination when the filtration of the diluted serum (a 0.45 μm pore size filter) was the only pre‐column sample handling operation. No disturbances attributable to the precipitation of proteins from the loaded samples in the chip channels were detected.  相似文献   

11.
Online sample concentration of acidic drugs by transient isotachophoresis (t-ITP) with the injection of a base is described in capillary zone electrophoresis (CZE). A positively coated capillary was conditioned with background electrolyte (ammonium acetate at pH 6). A long plug of sample solution (S) prepared in ammonium acetate was then hydrodynamically injected followed by the base (tetrapropylammonium hydroxide). A negative voltage was applied and caused the hydroxide ions from the base to penetrate the S zone and created a pH junction that swept through the S zone. The analytes stack at the junction where the mechanism of focusing was transient ITP with the acetate and hydroxide ions as leading and terminating ions, respectively. The concentrated analytes separated in co-EOF CZE once the hydroxide was exhausted. The base stacking strategy was tested using hypolipidemic, nonsteroidal anti-inflammatory, and diuretic drugs, and afforded 19-37 improvements in peak height.  相似文献   

12.
Microfluidic paper-based analytical devices (μPADs) allow user-friendly and portable chemical determinations, although they provide limited applicability due to insufficient sensitivity. Several approaches have been proposed to address poor sensitivity in μPADs, but they frequently require bulky equipment for power and/or read-outs. Universal serial buses (USB) are an attractive alternative to less portable power sources and are currently available in many common electronic devices. Here, USB-powered μPADs (USB μPADs) are proposed as a fusion of both technologies to improve performance without adding instrumental complexity. Two ITP USB μPADs were developed, both powered by a 5 V potential provided through standard USB ports. The first device was fabricated using the origami approach. Its operation was analyzed experimentally and numerically, yielding a two-order-of-magnitude sample focusing in 15 min. The second ITP USB μPAD is a novel design, which was numerically prototyped with the aim of handling larger sample volumes. The reservoirs were moved away from the ITP channel and capillary action was used to drive the sample and electrolytes to the separation zone, predicting 25-fold sample focusing in 10 min. USB μPADs are expected to be adopted by minimally-trained personnel in sensitive areas like resource-limited settings, the point-of-care and in emergencies.  相似文献   

13.
The use of a poly(methylmethacrylate) chip, provided with a pair of on-line coupled separation channels and on-column conductivity detectors, to isotachophoresis (ITP) separations of optical isomers was investigated. Single-column ITP, ITP in the tandem-coupled columns, and concentration-cascade ITP in the tandem-coupled columns were employed in this investigation using tryptophan enantiomers as model analytes. Although providing a high production rate (about 2 pmol of a pure tryptophan enantiomer separated per second), single-column ITP was found suitable only to the analysis of samples containing the enantiomers at close concentrations. A 94-mm separation path in ITP with the tandem-coupled separation channels made possible a complete resolution of a 1.5 nmol amount of the racemic mixture of the enantiomers. However, this led only to a moderate extension of the concentration range within which the enantiomers could be simultaneously quantified. The best results in this respect were achieved by using a concentration-cascade of the leading anions in the tandem-coupled separation channels. Here, a high production rate, favored in the first separation channel, was followed by the ITP migration of the enantiomers in the second channel under the electrolyte conditions enhancing their detectabilities. In dependence on the migration configuration of the enantiomers, this technique made possible their simultaneous determinations when their ratios in the loaded sample were 35:1 or less (D-tryptophan a major constituent) and 70:1 or less (L-tryptophan a major constituent).  相似文献   

14.
The analytical separation of proteins by isotachophoresis (ITP) was achieved in a short electrophoretic path and with a resolution comparable to that of isoelectric focusing by the appropriate selection of (1) a mixture of ampholytes as spacers to generate linear gradients of electrophoretic mobility and (2) the counter ions chosen to buffer the complete pH gradient generated. This ITP technique is exemplified by the analysis of plasma proteins in agarose gels. Up to 46 samples in the same gel plate were analysed. The resolution was such that at least 30 clear and discrete bands per sample could be observed after staining with Coomassie Brilliant Blue. The resolving power of ITP could be further increased for the study of a particular protein or zone by the selection of suitable spacers and counter ions.  相似文献   

15.
In micro total analysis systems, liquid chromatography (LC) works under pressure-driven flow is the essential analysis component. There were not, however, much works on microchip LC. Here we developed a microchip for reversed-phase LC using porous monolithic silica. The chip consisted of a double T-shaped injector and a approximately 40-cm serpentine separation channel. The octadecyl-modified monolithic silica was prepared in the specified part of the channel on the microchip using sol-gel process. Furthermore, the effect of geometry of turn sections on band dispersion at turns was examined under pressure-driven flow. High separation efficiencies of 15,000-18,000 plates/m for catechins were obtained using the LC chip.  相似文献   

16.
In this work we investigate the change in particle concentration near a solid boundary for colloidal dispersions in pressure driven flow, commonly referred to as wall depletion. In particular we determine the effect of Peclet number on the strength and spatial extent of the depleted layer. The change in concentration near the solid boundary is measured with attenuated total reflection infrared (ATR-IR) spectroscopy described previously (P.J.A. Hartman Kok et al., J. Rheol. 46 (2002) 481). The method is capable of measuring the concentration of particles at distances ranging from 0.2 to 1.0 mum from the boundary. The suspensions investigated consisted of mono-dispersed polystyrene particles in water. Particles of four different sizes were used, with radius, a, of 30, 54, 105, and 197 nm. (The ratio H/a was in the range 2500-17,000 with H being the height of the flow cell.) This enabled us to measure the wall depletion effect over a wide range of Peclet numbers, ranging from 0.01 to 45. We found that wall depletion was not significant for Peclet numbers smaller than unity. Estimates of the wall slip layer thickness obtained from rheological experiments were consistent with the results obtained by ATR-IR spectroscopy.  相似文献   

17.
The combination of capillary isotachophoresis (ITP) and capillary zone electrophoresis (CZE) in the column coupling configuration was optimized in a mode where the electrolyte for the CZE step is different from the leading and terminating ITP electrolytes. Two colored markers, picric acid and 1-nitroso-2-naphthol, were used for exact timing of the transfer of isotachophoretically stacked analyte zones into the CZE column and for the control of the residual amount of the leading and terminating ITP electrolytes entering the CZE capillary together with the analytes, thus controlling the duration of transient ITP migration in the CZE capillary and ensuring good separation of the analytes and reproducibility of the migration times (relative standard deviations 1%). ITP-CZE was applied to the simultaneous assay of several cinnamic acid derivatives and flavonoids in methanolic extracts of Sambucus flowers and Crataegus leaves and flowers. The preconcentrating and cleansing effect of the ITP step allowed injection of relatively large sample volumes (30 microL). The limits of detection were approximately 20-50 ng x mL(-1) and 100 ng x mL(-1) for the acids and flavonoids, respectively ( thick similar 200-times lower compared to conventional CE) with spectrophotometric detection at 254 nm. The ITP-CZE exhibited satisfactory linearity and precision when using CZE buffer of pseudo "pH" 9.0; 1-nitroso-2-naphthol was employed as the internal standard. The separation took approximately 35 min. The ITP-CZE results for rutin, hyperoside, and vitexin-2-O"-rhamnoside were in good accordance with those obtained previously by high-performance liquid chromatography.  相似文献   

18.
Marangoni migration of a single droplet in an unbounded viscous fluid under the additional effect of variable surface viscosity is studied. The surface tension and the surface viscosity depend on concentration of dissolved species. Cases of the motion induced by the presence of a point source and by a given constant concentration gradient are considered. The dependence of the migration velocity on the governing parameters is computed under quasi-stationary approximation. The effect of weak advective transport is studied making use of singular perturbations in the Peclet number, Pe. It is shown that, when the source is time dependent a Basset-type history term appears in the expansion of the concentration and, as a result, the leading order correction to the flow and to the migration velocity is of O(Pe(1/2)). If the source of active substance driving the flow is steady, the effect of convective transport on the migration is weaker.  相似文献   

19.
A method for the in-line preconcentration and enantioseparation of clenbuterol by transient isotachophoresis-capillary zone electrophoresis-UV absorbance detection (transient ITP-CZE-UV) has been developed. It implies the use of dimethyl-beta-cyclodextrin as chiral selector and the application of a hydrodynamic counterflow during the ITP step. ITP is used to focus the sample constituents prior to CE whereas a counterpressure counterbalances the electrophoretic migration of the compounds. The sample is then focused and kept stationary in the proximity of the capillary inlet before CZE separation, leading to an extended-volume ITP-CZE system. A new strategy for the fast optimization of the counterpressure has been developed which implies the measurement of the hydrodynamic and electrophoretic velocities of the analyte during ITP. The in-line preconcentration and enantioseparation of clenbuterol selected as model compound was optimized using this method. Salbutamol was chosen as internal reference in order to check the reproducibility of the method. A 173-nl volume of aqueous ample solution was injected which implies an improvement of the injection volume of about 16 and a resolution of 4.8 was obtained for the clenbuterol enantiomers. A concentration detection limit of 10(-6) mol/l was readily achieved for clenbuterol and salbutamol using only 3 min ITP preconcentration in in-line counterflow transient ITP-CZE-UV. Thanks to its fast optimization, the method is applicable to any enantioseparation by means of only five very short preliminary measurements.  相似文献   

20.
建立了基于相对迁移时间比例的方法,依据待侧DNA片段相对于上位及下位内标的迁移时间比例进行长度预测。实验结果显示,DNA片段的相对迁移时间比例在不同分析条件下具有良好的重现性。通过建立相对迁移时间比例相对于DNA片段长度的对应关系公式,实现了芯片瞬间等速电泳条件下DNA片段长度的准确预测。实际样品分析证实这种基于相对迁移时间比例的计算方法简单可靠,适合于芯片tITP-CGE分析中DNA长度的精确判定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号