首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Optically active molecules play important roles in medicinal chemistry and materials science in both industrial and academic sectors. Resolution is one of the most efficient ways to obtain enantiopure substances. For a long period, racemic carboxylic acids are generally resolved by optically active bases, however, these bases are often extremely toxic and expensive.[1] Recently, A. Mravik Group applied optically active O, O’-dibenzoyltartaric acid (DBTA), which is usually used for the res…  相似文献   

2.
The (N-benzyl-l-leucinato) copper(II) complex was shown pH titration to coordinate l-amino acids more strongly than d enantiomers. A chiral polymer complex, containing N-alkylated amino acid residue and copper(II) ion, was used partially to resolve some optically active amino acids. Unlike the (N-benzyl-l-amino acidate)-copper(II) complex, the polymer—copper(II) complex coordinates d-amino acids more strongly than l-enantiomers; the effect was explained by formation of (N,N-dialkylated-amino acidate) copper(II) complex in the polymer.  相似文献   

3.
Abstract

The results of a systematic study are summarized on chromatographic resolutions of racemic amino acids using ligand exchange on copper(II) ion-charged polystyrene type resins containing residues of optically active proline (I), hydroxyproline (II), allo-hydroxy-proline (III) and azetidine carboxylic acid (IV). Possible variants of the enantioselective complex formation in the resine phase are discussed.

Several examples of quantitative resolutions of racemic amino acids as well as members of other classes of chelating organic compounds are given.  相似文献   

4.
Chiral resolution of native DL-malic acid was achieved by ligand-exchange capillary electrophoresis using copper(II)-L-tartrate as a chiral selector. Factors affecting chiral resolution, migration time, and peak area of malic acid were studied. The running conditions for optimum separation of malic acid were found to be 1 mM copper(II) sulfate-1 mM L-tartrate (pH 5.1) with an effective voltage of -20 kV at 30 degrees C, using direct detection at 280 nm, and resolution (Rs) of racemic malic acid was approximately 4. With this system, D- and L-malic acids in apple juice were analyzed successfully.  相似文献   

5.
[reaction: see text] Optically active tellurinic acid was obtained for the first time by chromatographic resolution of racemic 2,4,6-triisopropylbenzenetellurinic acid (1) using a chiral column. Optically active tellurinic acid (+)-1 was stable toward racemization in hexane, although racemization occurred in hexane/2-propanol. The kinetic studies for the racemization, oxygen exchange reaction using H(2)(18)O, and theoretical studies clarified that the racemization of the optically active tellurinic acid in solution proceeds via a hypervalent tellurane formed by addition of water remaining in solvent.  相似文献   

6.
In mixtures of 7 vol. acetonitrile and 3 vol. acetic acid, solutions or suspensions of copper(II) acetate can be reduced with hydrazine hydrate to solutions of copper(I) acetate. In this way, purely white copper(I) acetate can be isolated. Other copper(I) carboxylates can be prepared by reduction of copper(II) carboxylates or by reaction of solid carboxylic acids with copper(I) acetate. By adding acetyl chloride to solutions of copper(I) acetate in acetonitrile/acetic acid mixtures, solutions of chlorocuprates(I) are formed. From these, highly pure copper(I) chloride can be obtained. By adding alkali acetate or tetramethyl ammonium chloride to solutions of chlorocuprates(I), the pure compounds Cs3[Cu2Cl5], Rb2[CuCl3] and NMe4[Cu2Cl3] were obtained.  相似文献   

7.
Four mixed-ligand complexes, [Cu3(cpa)6(pda)1] (1) (cpa = 4-chlorophenylacetic acid, pda = 1,2-diaminopropane), [Cu3(fpa)6(tn)1] (2) (fpa = 4-fluorophenylacetic acid, tn = 1,3-diaminopropane), [Cu3(cpa)6(en)1] (3) (cpa = 4-chlorophenylacetic acid, en = ethylenediamine), and [Cu3(fpa)6(pda)1] (4) (fpa = 4-fluorophenylacetic acid, pda = 1,2-diaminopropane), were synthesized by reacting 4-chlorophenylacetic acid or 4-fluorophenylacetic acid, the diamines, and metal salts. Their structures were determined by elemental analysis and single-crystal X-ray diffraction analysis. The antimicrobial activities for the metal complexes were evaluated against Escherichia coli, Pseudomonas putida, Bacillus subtilis, and Bacillus cereus. The antimicrobial results indicated that the four synthesized complexes displayed good inhibitory activity against E. coli and B. subtilis, and could be promising antibacterial agents.  相似文献   

8.
The dynamic kinetic resolution of racemic mixtures of tropic acid ethyl ester under substrate racemizing conditions was studied using lipase PS with a ruthenium catalyst. Isopropenyl acetate was used as an acyl donor, since it was found to be compatible with both catalysts; this resulted in an efficient dynamic kinetic resolution. With this process, a variety of racemic tropic acid ethyl esters were transformed to optically active acetoxy-2-arylpropionic acid ethyl esters with 60-88% yields and 53-92% ee.  相似文献   

9.
Oxidative kinetic resolution of racemic secondary alcohols by using acetone as a hydrogen acceptor in the presence of a catalytic amount of [RuCl(2)(PPh(3))(ferrocenyloxazolinylphosphine)] (2) proceeds effectively to recover the corresponding alcohols in high yields with an excellent enantioselectivity. When 1-indanol is employed as a racemic alcohol, the oxidation proceeds quite smoothly even in the presence of 0.0025 mol % of the catalyst 2 to give an optically active 1-indanol in good yield with high enantioselectivity (up to 94% ee), where turnover frequency (TOF) exceeds 80,000 h(-1). From a practical viewpoint, the kinetic resolution is investigated in a large scale, optically pure (S)-1-indanol (75 g, 56% yield, >99% ee) being obtained from racemic 1-indanol (134 g) by employing this kinetic resolution method twice.  相似文献   

10.
The in situ formed hydrazone Schiff base ligand (E)-N'-(2-hydroxy-3-methoxybenzylidene)benzoylhydrazone (H?L1) reacts with copper(II) acetate in ethanol in the presence of pyridine-4-carboxylic acid (isonicotinic acid, HL2) to green-[Cu(HL1)(L2)]·H?O·C?H?OH (1) and brown-[Cu(L1)(HL2)] (2) complexes which crystallize as concomitant tautomers where either the mono-anion (HL1)? or di-anion (L1)2? of the Schiff base and simultaneously the pyridine-carboxylate (L2)? or the acid (HL2) (both through the pyridine nitrogen atom) function as ligands. The square-planar molecular copper(II) complexes differ in only a localized proton position either on the amide nitrogen of the hydrazone Schiff base in 1 or on the carboxyl group of the isonicotin ligand in 2. The proportion of the tautomeric forms in the crystalline solid-state can be controlled over a wide range from 1:2 = 95?:?5 to ~2?:?98 by increasing the solution concentration. UV/Vis spectral studies show both tautomers to be kinetically stable (inert), that is, with no apparent tautomerization, in acetonitrile solution. The UB3LYP/6-31+G* level optimized structures of the two complexes are in close agreement with experimental findings. The solid-state structures feature 1D hydrogen-bonded chain from charge-assisted O((-))H-N and O-H((-))N hydrogen bonding in 1 and 2, respectively. In 1 pyridine-4-carboxylate also assumes a metal-bridging action by coordinating a weakly bound carboxylate group as a fifth ligand to a Cu axial site. Neighboring chains in 1 and 2 are connected by strong π-stacking interactions involving also the five- and six-membered, presumably metalloaromatic Cu-chelate rings.  相似文献   

11.
A variety of optically active carboxylic esters are produced by the kinetic resolution of racemic secondary benzylic alcohols using free carboxylic acids with benzoic anhydride and tetramisole derivatives. 4-Methoxybenzoic anhydride (PMBA) is the best reagent to use in producing the corresponding esters in high ee when the reaction is catalyzed by (+)-benzotetramisole (BTM); by contrast, when non-substituted benzoic anhydride is used as a coupling reagent, the resulting optically active alcohols are obtained with high selectivities. This protocol directly produces chiral carboxylic esters from free carboxylic acids and racemic secondary alcohols by utilizing the trans-acylation process to generate mixed anhydrides from acid components and benzoic anhydride derivatives under the influence of chiral catalysts.  相似文献   

12.
We report a new method for the preparation of chiral 2-aryl-2-fluoropropanoic acids, including 2-fluoroibuprofen, a fluorinated analogue of non-steroidal anti-inflammatory drugs (NSAIDs), by the kinetic resolution of racemic 2-aryl-2-fluoropropanoic acids using enantioselective esterification. By applying pivalic anhydride (Piv2O) as a coupling agent, bis(α-naphthyl)methanol [(α-Np)2CHOH] as an achiral alcohol, and (+)-benzotetramisole (BTM) as a chiral acyl-transfer catalyst, a series of racemic 2-aryl-2-fluoropropanoic acids were kinetically separated to afford the optically active carboxylic acids and the corresponding esters with good to high enantiomeric excesses. This technology can provide a convenient approach to furnish the chiral α-fluorinated drugs containing quaternary carbons at the α-positions in the 2-aryl-2-fluoropropanoic acid structure.  相似文献   

13.
To obtain optically active threo-2-amino-3-hydroxy-3-phenylpropanoic acid (1), (2RS,3SR)-2-benzoylamino-3-hydroxy-3-phenylpropanoic acid [(2RS,3SR)-2] was first optically resolved using (1S,2S)- and (1R,2R)-2-amino-1-(4-nitrophenyl)-1,3-propanediol as the resolving agents to afford (2R,3S)- and (2S,3R)-2 in yields of 73% and 66%, based on half of the starting amount of (2RS,3SR)-2. Next, the racemic structures of ammonium and some organic ammonium salts of (2RS,3SR)-2 were examined based on melting point, solubility, and infrared spectrum, with the aim of optical resolution by preferential crystallization. The benzylammonium salt of (2RS,3SR)-2 was suggested to exist as a conglomerate at room temperature, although it forms a racemic compound at the melting point. The optical resolution by preferential crystallization of the racemic salt afforded the (2R,3S)- and (2S,3R)-salts with optical purities of 90-97%. The (2R,3S)- and (2S,3R)-2 obtained from the purified salts were hydrolyzed by reflux in hydrochloric acid to give (2R,3S)- and (2S,3R)-1.  相似文献   

14.
A ligand exchange mechanism in non-aqueous capillary electrophoresis was employed for the separation of eight unmodified amino acids using chiral complexes of copper(II) with L-proline and L-isoleucine. The electrophoretic medium consisted of 25 mM ammonium acetate and 1 M acetic acid in methanol. We were able to completely separate the enantiomeric pairs of each of the investigated racemic amino acids. We also report the optimization of the separation parameters, such as pH*, composition of the complex, and concentration of the complexing agents.  相似文献   

15.
Stereochemically labile copper and zinc complexes with the N,N'-dimethylethylenediamine ligand (dmeda) have been shown to be promising precursors for the total spontaneous resolution of chiral covalent networks. (N,N')-[Cu(NO3)2(dmeda)]infinity crystallises as a conglomerate and yields either enantiopure (R,R)-1 or enantiopure (S,S)-1. A mixed-valence copper(I/II) complex, [{Cu(II)Br2(dmeda)}3(Cu(I)Br)2]infinity (2), which crystallises as a pair of interpenetrating chiral (10,3)-a nets, is formed from CuBr, CuBr2 and dmeda. One net contains ligands with solely (R,R) configuration and exhibits helices with (P) configuration while the other has solely (S,S)-dmeda ligands and gives rise to a net in which the helices have (M) configuration. The whole crystalline arrangement is racemic, because the interpenetrating chiral nets are of opposite handedness. With zinc chloride (R,S)-[ZnCl(dmeda)2]2[ZnCl4] (3) is obtained, which is a network structure, although not chiral. Total spontaneous resolution of stereochemically labile metal complexes formed from achiral or racemic building blocks is suggested as a viable route for the preparation of covalent chiral networks. Once the absolute structure of the compound has been determined by X-ray crystallography, a quantitative determination of the enantiomeric excess of the bulk product can be undertaken by means of solid-state CD spectroscopy.  相似文献   

16.
D(-)-Ephedrine was prepared by resolving the racemate through its N-benzyloxycarbonyl-L-phenylalanine salt in ether solution. The L(+)-ephedrine in mother liquid was recovered and precipitated exclusivly with N -benzyloxycarbonyl-L-alanine in ethyl acetate. The amino acid derivatives were recovered from the salts by acid decomposition and the optically pure ephedrine was also recovered, which was again useful for the resolution of racemic amino acid derivatives synthesized chemically. Other amino acid derivatves are also tested for the mutual resolution. Mutual resolution was also effected by dissolving DL-ephedrine and N -benzyloxycarbonyl-DL-alanine in ethyl acetate to obtain the optically pure D(-)-ephedrine and N -benzyloxycarbonyl-D-alanine.  相似文献   

17.
Chiral resolution of native DL-tartaric acid was performed by ligand-exchange capillary electrophoresis using copper(II)-D-quinic acid as a chiral selector. Factors affecting chiral resolution, migration time, and peak area of tartaric acid were studied. The running conditions for optimum separation of tartaric acid were found to be 1 mM copper(II) sulfate-10 mM D-quinic acid (pH 5.0) with an effective voltage of -15 kV at 30 degrees C, using direct detection at 250 nm, and resolution of racemic tartaric acid was approximately 1.3. With this system, chiral resolution of DL-tartaric acid in food products was conducted successfully.  相似文献   

18.
Tridentate Schiff-base carboxylate-containing ligands, derived from the condensation of 2-imidazolecarboxaldehyde with the amino acids beta-alanine (H2L1) and 2-aminobenzoic acid (H2L5) and the condensation of 2-pyridinecarboxaldehyde with beta-alanine (HL2), D,L-3-aminobutyric acid (HL3), and 4-aminobutyric acid (HL4), react with copper(II) perchlorate to give rise to the helical-chain complexes [[Cu(mu-HL1)(H2O)](ClO4)]n (1), [[Cu(mu-L2)(H2O)](ClO4).2H2O]n (2), and [[Cu(mu-L3)(H2O)](ClO4).2H2O]n (3), the tetranuclear complex [[Cu(mu-L4)(H2O)](ClO4)]4 (4), and the mononuclear complex [Cu(HL5)(H2O)](ClO4).1/2H2O (5). The reaction of copper(II) chloride with H2L1 leads not to a syn-anti carboxylate-bridged compound but to the chloride-bridged dinuclear complex [Cu(HL1)(mu-Cl)]2 (6). The structures of these complexes have been solved by X-ray crystallography. In complexes 1-4, roughly square-pyramidal copper(II) ions are sequentially bridged by syn-anti carboxylate groups. Copper(II) ions exhibit CuN2O3 coordination environments with the three donor atoms of the ligand and one oxygen atom belonging to the carboxylate group of an adjacent molecule occupying the basal positions and an oxygen atom (from a water molecule in the case of compounds 1-3 and from a perchlorate anion in 4) coordinated in the apical position. Therefore, carboxylate groups are mutually cis oriented and each syn-anti carboxylate group bridges two copper(II) ions in basal-basal positions with Cu...Cu distances ranging from 4.541 A for 4 to 5.186 A for 2. In complex 5, the water molecule occupies an equatorial position in the distorted octahedral environment of the copper(II) ion and the Cu-O carboxylate distances in axial positions are very large (>2.78 A). Therefore, this complex can be considered as mononuclear. Complex 6 exhibits a dinuclear parallel planar structure with Ci symmetry. Copper(II) ions display a square-pyramidal coordination geometry (tau = 0.06) for the N2OCl2 donor set, where the basal coordination sites are occupied by one of the bridging chlorine atoms and the three donor atoms of the tridentate ligand and the apical site is occupied by the remaining bridging chlorine atom. Magnetic susceptibility measurements indicate that complexes 1-4 exhibit weak ferromagnetic interactions whereas a weak antiferromagnetic coupling has been established for 6. The magnetic behavior can be satisfactorily explained on the basis of the structural data for these and related complexes.  相似文献   

19.
We developed a novel microreaction system for optical resolution of racemic amino acids. This device, which is based on a continuous microfluidic system, consists of an enzyme-immobilized microreactor and a microextractor. Use of the enzyme-microreactor, which was prepared by membrane formation on the microchannel surface, enabled a highly enantioselective reaction for a racemic amino acid derivative. The microextractor provided a laminar flow of two immiscible solutions, which enabled selective extraction of the product. Using this integrated device, we could perform efficient continuous production of optically pure unnatural amino acids.  相似文献   

20.
To synthesize optically active 2-amino-2-methyl-3-phenylpropanoic acid (1), (RS)-2-benzoylamino-2-benzyl-3-hydroxypropanoic acid [(RS)-2] was first optically resolved using cinchonidine as a resolving agent to yield optically pure (S)- and (R)-2 in yields of about 70%, based on half of the starting amount of (RS)-2. Next, the racemic structure of (RS)-2 was examined based on melting point, solubility, IR spectrum, and binary and ternary phase diagrams, with the aim of optical resolution by preferential crystallization of (RS)-2. Results indicated that the (RS)-2 exists as a conglomerate at room temperature, although it forms a racemic compound at the melting point. The optical resolution by preferential crystallization yielded (S)- and (R)-2 with optical purities of about 90%, which were fully purified by recrystallization. After O-tosylation of (S)- and (R)-2, reduction by zinc powder and sodium iodide gave (R)- and (S)-1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号