首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we propose and numerically investigate a superconvergent cluster recovery (SCR) method for the Crouzeix-Raviart (CR) element. The proposed recovery method reconstructs a $C^0$ linear gradient. A linear polynomial approximation is obtained by a least square fitting to the CR element approximation at certain sample points, and then taken derivatives to obtain the recovered gradient. The SCR recovery operator is superconvergent on uniform mesh of four patterns. Numerical examples show that SCR can produce a superconvergent gradient approximation for the CR element, and provide an asymptotically exact error estimator in the adaptive CR finite element method.  相似文献   

2.
In this paper, we derive gradient recovery type a posteriori error estimate for the finite element approximation of elliptic equations. We show that a posteriori error estimate provide both upper and lower bounds for the discretization error on the non-uniform meshes. Moreover, it is proved that a posteriori error estimate is also asymptotically exact on the uniform meshes if the solution is smooth enough. The numerical results demonstrating the theoretical results are also presented in this paper.  相似文献   

3.
In this paper we are concerned with finite element approximations to the evaluation of American options. First, following W. Allegretto etc., SIAM J. Numer. Anal. 39 (2001), 834–857, we introduce a novel practical approach to the discussed problem, which involves the exact reformulation of the original problem and the implementation of the numerical solution over a very small region so that this algorithm is very rapid and highly accurate. Secondly by means of a superapproximation and interpolation postprocessing analysis technique, we present sharp L 2-, L -norm error estimates and an H 1-norm superconvergence estimate for this finite element method. As a by-product, the global superconvergence result can be used to generate an efficient a posteriori error estimator. This work was supported in part by the National Natural Science Foundation of China (10471103 and 10771158), the National Basic Research Program (2007CB814906), Social Science Foundation of the Ministry of Education of China (Numerical Methods for Convertible Bonds, 06JA630047), Tianjin Natural Science Foundation (07JCY-BJC14300), and Tianjin University of Finance and Economics.  相似文献   

4.
We propose the use of an averaging scheme, which recovers gradients from piecewise linear finite element approximations on the (1 + α˜)—regular triangular elements to gradients of the weak solution of a second-order elliptic boundary value problem in the 2-dimensional space. The recovered gradients, from mid-points of element edges, are superconvergent estimates of the true gradients. This work is an extension of Levine [Levine, IMA J. Numer. Anal. 5 , 407 (1985)] and follows some of the ideas therein. © 1998 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 14:169–192, 1998  相似文献   

5.
This article derives a general superconvergence result for nonconforming finite element approximations of the Stokes problem by using a least‐squares surface fitting method proposed and analyzed recently by Wang for the standard Galerkin method. The superconvergence result is based on some regularity assumption for the Stokes problem and is applicable to any nonconforming stable finite elements with regular but nonuniform partitions. © 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 18: 143–154, 2002; DOI 10.1002/num.1036  相似文献   

6.
We investigate the relationship between finite volume and finite element approximations for the lower‐order elements, both conforming and nonconforming for the Stokes equations. These elements include conforming, linear velocity‐constant pressure on triangles, conforming bilinear velocity‐constant pressure on rectangles and their macro‐element versions, and nonconforming linear velocity‐constant pressure on triangles and nonconforming rotated bilinear velocity‐constant pressure on rectangles. By applying the relationship between the two methods, we obtain the convergence finite volume solutions for the Stokes equations. © 2001 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 17: 440–453, 2001.  相似文献   

7.
A newly developed weak Galerkin method is proposed to solve parabolic equations. This method allows the usage of totally discontinuous functions in approximation space and preserves the energy conservation law. Both continuous and discontinuous time weak Galerkin finite element schemes are developed and analyzed. Optimal‐order error estimates in both H1 and L2 norms are established. Numerical tests are performed and reported. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

8.
We establish a posteriori error analysis for finite volume methods of a second‐order elliptic problem based on the framework developed by Chou and Ye [SIAM Numer Anal, 45 (2007), 1639–1653]. This residual type estimators can be applied to different finite volume methods associated with different trial functions including conforming, nonconforming and totally discontinuous trial functions. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1165–1178, 2011  相似文献   

9.
1.IntroductionLetfibeaplanedomainwithsmoothboundaryonandWm,p(fl)betheusualSobolevspaceonnwithnormWhenp=2,pisusuallyomitted.WeshalldenotetheusualinnerproductinL'(fl)orLa(O)'by','),andinL'(ofl)by't').Weshallusethesamenotationstoindicatethedualltiesbetw...  相似文献   

10.
We study the superconvergence of the finite volume element (FVE) method for solving convection‐diffusion equations using bilinear trial functions. We first establish a superclose weak estimate for the bilinear form of FVE method. Based on this estimate, we obtain the H1‐superconvergence result: . Then, we present a gradient recovery formula and prove that the recovery gradient possesses the ‐order superconvergence. Moreover, an asymptotically exact a posteriori error estimate is also given for the gradient error of FVE solution.Copyright © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 1152–1168, 2014  相似文献   

11.
In this paper we give weighted, or localized, pointwise error estimates which are valid for two different mixed finite element methods for a general second-order linear elliptic problem and for general choices of mixed elements for simplicial meshes. These estimates, similar in spirit to those recently proved by Schatz for the basic Galerkin finite element method for elliptic problems, show that the dependence of the pointwise errors in both the scalar and vector variables on the derivative of the solution is mostly local in character or conversely that the global dependence of the pointwise errors is weak. This localization is more pronounced for higher order elements. Our estimates indicate that localization occurs except when the lowest order Brezzi-Douglas-Marini elements are used, and we provide computational examples showing that the error is indeed not localized when these elements are employed.

  相似文献   


12.
In this paper, a weak Galerkin finite element method is proposed and analyzed for the second-order elliptic equation with mixed boundary conditions. Optimal order error estimates are established in both discrete $H^1$ norm and the standard $L^2$ norm for the corresponding WG approximations. The numerical experiments are presented to verify the efficiency of the method.  相似文献   

13.
An a posteriori error analysis for Boussinesq equations is derived in this article. Then we compare this new estimate with a previous one developed for a regularized version of Boussinesq equations in a previous work. © 2000 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 16: 214–236, 2000  相似文献   

14.
We prove a priori estimates and optimal error estimates for linear finite element approximations of elliptic systems in divergence form with continuous coefficients in Campanato spaces. The proofs rely on discrete analogues of the Campanato inequalities for the solution of the system, which locally measure the decay of the energy. As an application of our results we derive -estimates and give a new proof of the well-known -results of Rannacher and Scott.

  相似文献   


15.
A new numerical method for computing the divergence-free part of the solution of the time-harmonic Maxwell equations is studied in this paper. It is based on a discretization that uses the locally divergence-free Crouzeix-Raviart nonconforming vector fields and includes a consistency term involving the jumps of the vector fields across element boundaries. Optimal convergence rates (up to an arbitrary positive ) in both the energy norm and the norm are established on graded meshes. The theoretical results are confirmed by numerical experiments.

  相似文献   


16.
We consider the enhancement of accuracy, by means of a simple post-processing technique, for finite element approximations to transient hyperbolic equations. The post-processing is a convolution with a kernel whose support has measure of order one in the case of arbitrary unstructured meshes; if the mesh is locally translation invariant, the support of the kernel is a cube whose edges are of size of the order of only. For example, when polynomials of degree are used in the discontinuous Galerkin (DG) method, and the exact solution is globally smooth, the DG method is of order in the -norm, whereas the post-processed approximation is of order ; if the exact solution is in only, in which case no order of convergence is available for the DG method, the post-processed approximation converges with order in , where is a subdomain over which the exact solution is smooth. Numerical results displaying the sharpness of the estimates are presented.

  相似文献   


17.
We provide an error analysis of finite element methods for solving time-dependent Maxwell problem using Nedelec and Thomas-Raviart elements. We study the regularity of the solution and develop some new error estimates of Nedelec finite elements. As a result, the optimal -error bound for the semidiscrete scheme is obtained.

  相似文献   


18.
In this article, a new weak Galerkin mixed finite element method is introduced and analyzed for the Helmholtz equation with large wave numbers. The stability and well‐posedness of the method are established for any wave number k without mesh size constraint. Allowing the use of discontinuous approximating functions makes weak Galerkin mixed method highly flexible in term of little restrictions on approximations and meshes. In the weak Galerkin mixed finite element formulation, approximation functions can be piecewise polynomials with different degrees on different elements and meshes can consist elements with different shapes. Suboptimal order error estimates in both discrete H1 and L2 norms are established for the weak Galerkin mixed finite element solutions. Numerical examples are tested to support the theory.  相似文献   

19.
For rectangular finite element, we give a superconvergence method by SPR technique based on the generalization of a new ultraconvergence record and the sharp Green function estimates, by which we prove that the derivative has ultra-convergence of order O(h k+3) (k ⩾ 3 being odd) and displacement has order of O(h k+4) (k ⩾ 4 being even) at the locally symmetry points.   相似文献   

20.
A projected-shear finite element method for periodic Reissner–Mindlin plate model are analyzed for rectangular meshes. A projection operator is applied to the shear stress term in the bilinear form. Optimal error estimates in the L2-norm, the H1-norm, and the energy norm for both displacement and rotations are established and gradient superconvergence along the Gauss lines is justified in some weak senses. All the convergence and superconvergence results are uniform with respect to the thickness parameter t. © 1998 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 14: 367–386, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号