首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 281 毫秒
1.
Introduction Atom adsorption on transition metal surfaces has attracted special attention as a base for understanding the fundamental processes of oxidative catalysis. Particularly interesting is the adsorption and diffusion of oxygen on well-defined metal surfaces. An oxygen covered palladium surface, for example, plays a central role in several important reactions such as oxidation of carbon monoxide and ammonia. In particular, the (100), (111), (110) surfaces and the interactions with oxyge…  相似文献   

2.
To study the adsorption behavior of Cu+ in aqueous solution on semiconductor surface, the interactions of Cu+ and hydrated Cu+ cations with the clean Si(111) surface were investigated via hybrid density functional theory(B3LYP) and Mller-Plesset second-order perturbation(MP2) method. The clean Si(111) surface was described with cluster models(Si14H17, Si16H20 and Si22H21) and a four-silicon layer slab under periodic boundary conditions. Calculation results indicate that the bonding nature of adsorption of Cu+ on Si surface can be viewed as partial cova- lent as well as ionic bonding. The binding energies between hydrated Cu+ cations and Si(111) surface are large, suggesting a strong interaction between them. The coordination number of Cu+(H2O)n on Si(111) surface was found to be 4. As the number of water molecules is larger than 5, water molecules form a hydrogen bond network. In aqueous solution, Cu+ cations will safely attach to the clean Si(111) surface.  相似文献   

3.
The adsorption of nitric oxide adsorption on clean Mod(111), Mo(111)/O2-(4×4), Mo(111)/O2-(1×3), Mo(111)/O2-(112) facets and Mo(111) oxide surfaces was studied. Mass 28 (N2) desorption spectra show two high temperature peaks at approximate 1030 (β1) and 1200K (β2). For NO exposures less than 0. 1 L only the ft peak was observed. At higher exposures, the ft peak appeared and small amounts of N2O as well as NO desorbed. The preadsorption of oxygen blocked the β2 desorption partially on the (4×4) and (1×3) surfaces and fully on the (112) facet and oxide surfaces. In addition, the β1 desorption peak shifted to higher temperatures with increasing oxygen preexposure.  相似文献   

4.
1 INTRODUCTION Atom adsorption on transition metal surfaces has attracted special attention as a basis for understand- ing the fundamental processes of oxidative cataly- sis. An oxygen-covered platinum surface for example, plays a central role in several important reactions, such as oxidation of carbon monoxide[1]. Moreover, the behavior of oxygen in the proximity of surface defects like kinks and steps is a central issue in understanding the chemisorption processes on ca- talytic surfaces…  相似文献   

5.
Bond-order conservation-Morse potential (BOC-MP) approach hasbeen used to study the mechanism of methanol decomposition on the clean andoxygen-modified Fe(100), Cu (100) surfaces. On the clean Cu (100) surfacemethanol was adsorbed in molecular forms and desorbed without dissociation,but on the clean Fe(100) surface it decomposed via a methoxy (CH_3O) inter-mediate into carbon monoxide (CO) and hydrogen (H_2) mainly, or into methyl(CH_3) and hydroxyl (OH) species directly. The thermal stability of methoxyincreased in the presence of pre-adsorbed oxygen(O_3). Hollow site O_3 poisonedthe decomposition of methanol, but non-hollow site O_3 promoted the decomposi-tion of methanol into the methoxy, which decomposed and selectively led to theformation of formaldehyde (H_2CO) on oxygen-modified Cu surfaces. The for-mation of formaldehyde via a disproportionation reaction of methoxy is also dis-cussed.  相似文献   

6.
Scanning probe microscopy(SPM) stands out as one of the most powerful tools for characterizing the solid surface and the adsorbed molecules with ?ngstr?m resolution in real space. In particular, this unique technique provides an unprecedented opportunity for directly probing the low-dimensional ices at surfaces. In this perspective, we first review the recent advances of scanning tunneling microscopy(STM) imaging of various two-dimensional(2 D) ice structures on metal[1-7], insulator[8-12], graphite[13-15] surfaces and under strong confinement[10, 16-19]. We then introduce that noncontact atomic-force microscopy(AFM) with a CO-terminated tip enables atomic imaging of a genuine 2 D ice grown on a hydrophobic Au(111) surface with minimal perturbation[20], paying particular attention to the growth processes at the edges of 2 D ice. In the end, we present an outlook on the future applications of 2 D ice as well as the relation between the 2 D and 3 D ice growth.  相似文献   

7.
We applied periodic density-functional theory to investigate the adsorption of C2H2 on the Cu/Pt bimetallic and monometallic surfaces, including Cu-Pt-Pt and Pt-Cu-Pt representing the monolayer Cu on the Pt surface and subsurface Cu in the Pt surface, respectively. For the Pt(111) and Pt-Cu-Pt surfaces, C2H2 is preferentially a 3-fold "parallel-bridge" configuration, and a "μ-bridge" structure exists above the Cu(111) and Cu-Pt-Pt surfaces. The adsorption energy of C2H2 on these surfaces decreases in the order Pt(111) > Cu-Pt-Pt > Pt-Cu-Pt > Cu(111). The analysis of density of states, charge, and vibrational frequencies showed obviously weakening of the adsorbed C-C bond and high sp2 character on the carbon atom. Furthermore, when the top-layer compositions are equal, the nearer the EF d-band center is, the larger the C2H2 adsorption energy will be.  相似文献   

8.
纳米铜粉对高氯酸铵热分解的影响   总被引:3,自引:0,他引:3  
The decomposition behaviour of ammonium perchlorate (AP) has been investigated in the presence of Cu nanopowder by DTA. The results show that nanometer Cu powder decreased the first and second thermal decomposition temperature of AP by 35.1 ℃ and 130.2 ℃, respectively, and the DTA heat release of AP in the presence of Cu nanopowders increased to 1.20 kJ·g-1, showing good catalytic effect on the thermal decomposition of AP. The catalytic effect of Cu micron-size powder on the thermal decomposition of AP was less than that of Cu nanopowder. With the increase in content, Cu nanopowder enhanced its catalytic effect on the high temperature decomposition of AP, however, it weakened its catalytic effect on the low temperature decomposition of AP. The mechanism of catalysis for the thermal decomposition of AP is as follows: (1) metal oxider acts as the intermedium in the process of election tranfer, (2) Cu nanopowder reacts with the decomposed product of AP, (3) Cu nanopowder has special surface effect.  相似文献   

9.
1 INTRODUCTION The interaction of water molecules with metal sur- faces plays a vital role in a number of important pro- cesses, such as corrosion, heterogeneous catalysis, electrochemical processes in aqueous solutions, hydrogen production, etc.[1] The structure and pro- perties of water adsorbed on well-defined metal sur- faces have been the subject of numerous experi- mental and theoretical investigations. There have been a number of experimental studies of water on metal surfaces throu…  相似文献   

10.
The adsorption of carbon monoxide on single-crystal transition metal surfaces has been the subject of numerous studies, because it has served as a model system for the adsorption of small molecules on transition metal surfaces, and its industrial importance is obvious in such areas as catalytic reaction. The bonding of carbon monoxide to rhodium is of special interest since this metal catalyzes the hydrogenation of CO to produce hydrocarbons in both heterogeneous and homogeneous media, and it …  相似文献   

11.
甲醇在Au(111)表面吸附的密度泛函研究   总被引:2,自引:0,他引:2  
 采用基于第一性原理的密度泛函理论和周期平板模型相结合的方法,对CH3OH分子在Au(111)表面top, fcc, hcp和bridge位的吸附模型进行了构型优化、能量计算以及Mulliken布居分析,结果表明top位是较有利的吸附位. 吸附的CH3OH解离产生甲氧基CH3O和H, 对它们在Au(111)面的吸附进行的计算表明, bridge和fcc位分别是二者的最佳吸附位. 对过渡态的计算给出了CH3OH在Au表面解离吸附的可能机理: 首先发生 O-H 键的断裂,继而生成甲氧基中间体.  相似文献   

12.
甲醇在Pt-Fe(111)/C表面吸附的理论研究   总被引:1,自引:0,他引:1  
王译伟  李来才  田安民 《化学学报》2008,66(22):2457-2461
采用密度泛函理论和周期平板模型相结合的方法, 对CH3OH分子在Pt-Fe(111)/C表面top, fcc, hcp和bridge位的吸附模型进行了构型优化、能量计算, 结果表明bridge位是较有利的吸附位. 掺杂后费米能级的位置发生了右移, 价带和导带均增宽, 极利于电子-空穴的迁移, 这对提高催化活性是非常有利的. 考察抗中毒性发现: CO在Pt(111)/C面上的吸附能比甲醇吸附能要高, CO在Pt-Fe(111)/C的吸附能比甲醇吸附能要低, 可说明CO在Pt(111)/C面上有中毒效应, 而Pt-Fe(111)/C的抗CO中毒能力增强, 是催化氧化甲醇良好的催化剂.  相似文献   

13.
Adsorption of methanol and methoxy at four selected sites(top,bridge,hcp,fcc)on Cu(111)surface has beeninvestigated by density functional theory method at the generalized gradient approximation(GGA)level.The cal-culation on adsorption energies,geometry and electronic structures,Mulliken charges,and vibrational frequenciesof CH_3OH and CH_3O on clean Cu(111)surface was performed with full-geometry optimization,and compared withthe experimental data.The obtained results are in agreement with available experimental data.The most favoriteadsorption site for methanol on Cu(111)surface is the top site,where C-O axis is tilted to the surface.Moreover,the preferred adsorption site for methoxy on Cu(111)surface is the fcc site,and it adsorbs in an upright geometrywith pseudo-C_(3v) local symmetry.Possible decomposition pathways also have been investigated by transition-statesearching methods.Methoxy radical,CH_3O,was found to be the decomposition intermediate.Methanol can be ad-sorbed on the surface with its oxygen atom directly on a Cu atom,and weakly chemisorbed on Cu(111)surface.Incontrast to methanol,methoxy is strongly chemisorbed to the surface.  相似文献   

14.
The adsorption energetics of NO and CO on Pt(111) are studied using an ab initio embedding theory. The Pt(111) surface is modeled as a three-layer, 28-atom cluster with the Pt atoms fixed at bulk lattice sites. Molecular NO is adsorbed at high symmetry sites on Pt(111), with the fcc threefold site energetically more favorable than the hcp threefold and bridge sites. The calculated adsorption energy at the fcc threefold site is 1.90 eV, with an N-surface distance of 1.23 Å. The NO molecular axis is perpendicular to the Pt(111) surface. Tilting the O atom away from the surface normal destablizes adsorbed NO at all adsorption sites considered. On-top Pt adsorption has been ruled out. The Pt(111) potential surface is very flat for CO adsorption, and the diffusion barriers from hcp to fcc sites are 0.03 eV and less than 0.06 eV across the bridge and the atop sites, respectively. Calculated adsorption energies are 1.67, 1.54, 1.51, and 1.60 eV at the fcc threefold, hcp threefold, bridge, and atop sites, respectively. Calculated C-surface distances are 1.24 Å at the fcc threefold site and 1.83 Å at the atop site. It is concluded that NO and CO adsorption energetics and geometries are different on Pt(111).  相似文献   

15.
甲醇在Pt-Mo(111)/C表面上的吸附   总被引:1,自引:0,他引:1  
采用密度泛函理论和周期平板模型相结合的方法, 对CH3OH分子在Pt-Mo(111)/C表面的顶位、穴位和桥位共计9种吸附模型进行了构型优化、能量计算和频率分析, 结果表明top-Pt位是较有利的吸附位. Mo掺杂后价带与导带位置均有不同程度的降低, 电子结构的变化使得Pt-Mo(111)/C的催化活性提高. 并且在考虑催化剂抗中毒性能时发现: CO在Pt(111)/C面上的吸附能比甲醇吸附能要高, CO在Pt-Mo(111)/C上的吸附能比甲醇的要低, 说明CO在Pt(111)/C面上的吸附会阻碍甲醇的吸附, 并影响催化过程的进行, 而Pt-Mo(111)/C的抗CO中毒化能力增强, 是催化氧化甲醇较好的催化剂.  相似文献   

16.
采用密度泛函理论(DFT)的B3LYP方法,以原子簇Rh13(9,4)为模拟表面,在6-31G(d,p)与Lanl2dz基组水平上,对甲氧基在Rh(111)表面的四种吸附位置(fcc、hcp、top、bridge)的吸附模型进行了几何优化、能量计算、Mulliken电荷布局分析以及前线轨道的计算。结果表明,当甲氧基通过氧与金属表面相互作用时,在bridge位的吸附能最大,吸附体系最稳定,在top位转移的电子数最多;吸附于Rh(111)面的过程中C—O键被活化,C—O键的振动频率发生红移。  相似文献   

17.
采用周期平板模型, 结合密度泛函理论对HCOOH和CO在Pt-Sn(111)/C表面的top、brigde、hcp和fcc共计8个位点的吸附模型进行构型优化和能量计算, 并对吸附前后的频率、电荷、能带和态密度进行了研究. 计算结果表明fcc-Pt3是较为有利的吸附位点, Sn掺杂之后费米能级右移, 导带增宽, 价带和导带的位置略微降低, 合金表面电子结构变化利于甲酸的吸附解离催化, 可使甲酸燃料电池阳极催化性能显著提高. 通过催化剂表面的抗中毒分析, 发现CO在Pt-Sn(111)/C表面的吸附能以两种趋势下降, 阳极催化剂掺杂改性后抗CO中毒能力增强.  相似文献   

18.
We studied the interactions between atomic potassium (K) and Au(111) at a range of coverage (i.e., Θ(K) = 0.11-0.5 monolayer (ML)) by ab initio atomic thermodynamics. For K on-surface adsorption, we found that K energetically favors the three-fold hollow sites (fcc or hcp), while the most significant surface rumpling was obtained at the atop sites. The incorporation of gold atoms in the adsorbate layer gradually becomes energetically favorable with increasing K coverage. We proposed a possible model with a stoichiometry of K(2)Au for the (2 × 2)-0.5 ML phase observed in lower energy electron diffraction (LEED): one K at atop site and the other K as well as one Au adatom at the second-nearest fcc/hcp and hcp/fcc, respectively. Clear theoretical evidences were given for the ionic interaction of K on Au surface. Additionally, phase transitions were predicted based on chemical potential equilibrium of K, largely in line with the earlier reported LEED observations: the clean surface → (√3 × √3)R30° → (2 × 2), and (2 × 2) → (√3 × √3)R30° reversely at an elevated temperature.  相似文献   

19.
采用广义梯度近似(GGA)密度泛函理论(DFT)的PW91方法结合周期性模型, 在DNP基组下, 利用Dmol3模块研究了CO和H2在真空和液体石蜡环境下在Cu(111)表面上不同位置的吸附. 计算结果表明, 溶剂化效应对H2和CO的吸附结构参数和吸附能的影响非常显著. 在液体石蜡环境下, H2平行吸附在Cu(111)表面是解离吸附, 而CO 和H2在两种环境下的垂直吸附都是非解离吸附. 相比真空环境吸附, 在液体石蜡环境中, Cu(111)吸附CO时, 溶剂化效应能够提高CO吸附的稳定性, 同时有利于CO的活化. 在真空中, H2只能以垂直方式或接近垂直方式吸附在Cu(111)表面. 当Cu(111)顶位垂直吸附H2, 相比真空环境吸附, 溶剂化效应能够提高H2吸附的稳定性, 但对H2的活化没有明显影响. Cu(111)表面的桥位或三重穴位(hcp和fcc)垂直吸附H2时, 溶剂化效应能明显提高H2的活化程度, 但降低H2的吸附稳定性; 在液体石蜡中, 当H2平行Cu(111)表面吸附时, 溶剂化效应使H—H键断裂, 一个H原子吸附在fcc位, 另一个吸附在hcp位.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号