首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Two rapid, simple and sensitive extractive specrophotometric methods has been developed for the determination of anti-tussive drugs, e.g., dextromethorphan hydrobromide (DEX) and pipazethate hydrochloride (PiCl) and anti-spasmodic drugs, e.g., drotaverine hydrochloride (DvCl) and trimebutine maleate (TM) in bulk and in their pharmaceutical formulations. The proposed methods depend upon the reaction of cobalt(II)-thiocyanate (method A) and molybdenum(V)-thiocyanate ions (method B) with the cited drugs to form stable ion-pair complexes which extractable with an n-butnol-dichloromethane solvent mixture (3.5:6.5) and methylene chloride for methods A and B, respectively. The blue and orange red color complexes are determined either colorimetrically at lambdamax 625 nm (using method A) and 467 or 470 nm for (DEX and PiCl) or (DvCl and TM), respectively (using method B). The concentration range is 20-400 and 2.5-50 microg mL-1 for methods A and B, respectively. The proposed method was successfully applied for the determination of the studied drugs in pure and in pharmaceutical formulations applying the standard additions technique and the results obtained in good agreement well with those obtained by the official method.  相似文献   

2.
Three simple, accurate and sensitive colorimetric methods (A, B and C) for the determination of ranitidine HCl (RHCl) in bulk sample, in dosage forms and in the presence of its oxidative degradates are described. The first method A is based on the oxidation of the drug by N-bromosuccinimide (NBS) and determination of the unreacted NBS by measurement of the decrease in absorbance of amaranth dye (AM) at a suitable lambda(max)=520 nm. The methods B and C involve the addition of excess Ce(4+) and determination of the unreacted oxidant by decrease the red color of chromotrope 2R (C2R) at a suitable lambda(max)=528 nm for method B or decrease the orange pink color of rhodamine 6G (Rh6G) at a suitable lambda(max)=526 nm for method C. Regression analysis of Beer-Lambert plots showed good correlation in the concentration ranges 0.2-3.6, 0.1-2.8 and 0.1-2.6 microg ml(-1) for methods A, B and C, respectively. The apparent molar absorptivity. Sandell sensitivity, detection and quantitation limits were calculated. For more accurate results, Ringbom optimum concentration ranges were 0.3-3.4, 0.2-2.6 and 0.2-2.4 microg ml(-1) for methods A, B and C, respectively. Analyzing pure and dosage forms containing RHCl tested the validity of the proposed methods. The relative standard deviations were 相似文献   

3.
Thin-layer chromatography, first derivative, ratio spectra derivative spectrophotometry and Vierordt's method have been developed for the simultaneous determination of paracetamol and drotaverine HCl. TLC densitometric method depends on the difference in Rf values using ethyl acetate:methanol:ammonia (100:1:5 v/v/v) as a mobile phase. The spots of the two drugs were scanned at 249 and 308 nm over concentration ranges of 60-1200 microg/ml and 20-400 microg/ml with mean percentage recovery 100.11%+/-1.91 and 100.15%+/-1.87, respectively. The first derivative spectrophotometric method deals with the measurements at zero-crossing points 259 and 325 nm with mean percentage recovery 99.25%+/-1.08 and 99.45%+/-1.14, respectively. The ratio spectra first derivative technique was used at 246 and 305 nm with mean percentage recovery 99.75%+/-1.93 and 99.08%+/-1.22, respectively. Beer's law for first derivative and ratio spectra derivative methods was obeyed in the concentration range 0.8-12.8 and 0.4-6.4 microg/ml of paracetamol and drotaverine HCl, respectively. Vierordt's method was applied to over come the overlapping of paracetamol and drotaverine HCl in zero-order spectra in concentration range 2-26 and 2-40 microg/ml respectively. The suggested methods were successfully applied for the analysis of the two drugs in laboratory prepared mixtures and their pharmaceutical formulation. The validity of the methods was assessed by applying the standard addition technique. The obtained results were statistically agreed with those obtained by the reported method.  相似文献   

4.
Two sensitive and simple spectrophotometric methods are developed for the determination of trazodone HCl, famotidine, and diltiazem HCl in pure and pharmaceutical preparations. The methods are based on the oxidation of the cited drugs with iron(III) in acidic medium. The liberated iron(II) reacts with 1,10-phenanthroline (method A) and the ferroin complex is colorimetrically measured at 510 nm against reagent blank. Method B is based on the reaction of the liberated Fe(II) with 2,2-bipyridyl to form a stable colored complex with lambda(max )at 520 nm. Optimization of the experimental conditions was described. Beer's law was obeyed in the concentration range of 1-5, 2-12, and 12-32 microg mL(-1) for trazodone, famotidine, and diltiazem with method A, and 1-10 and 8-16 microg mL(-1) for trazodone and famotidine with method B. The apparent molar absorptivity for method A is 1.06x10(5), 2.9x10(4), 1.2x10(4) and for method B is 9.4x10(4 )and 1.6x10(4), respectively. The suggested procedures could be used for the determination of trazodone, famotidine, and diltiazem, both in pure and dosage forms without interference from common excipients.  相似文献   

5.
A selective, precise, and accurate method was developed for the determination of cimetidine (C), famotidine (F), and ranitidine hydrochloride (R x HCl) in the presence of their sulfoxide derivatives. The method involves quantitative densitometric evaluation of mixtures of the drugs and their derivatives after separation by high-performance thin-layer chromatography on silica gel plates (10 x 20 cm) with ethyl acetate-isopropanol-20% ammonia (9 + 5 + 4, v/v) as the mobile phase for both C and F and ethyl acetate-methanol-20% ammonia (10 + 2 + 2, v/v) as the mobile phase for R x HCl; Rf values for C, F, and R x HCl and their corresponding derivatives were 0.85 and 0.59, 0.73 and 0.41, and 0.56 and 0.33, respectively. Developing time was approximately 20 min. For densitometric evaluation, peak areas were recorded at 218, 265, and 313 nm for C, F, and R x HCl, respectively. The relationship between concentration and the corresponding peak area was plotted for the ranges of 5-50 microg/spot for C and 2-20 microg/spot for F and R x HCl. Mean recoveries were 100.39 +/- 1.33, 99.77 +/- 1.30, and 100.09 +/- 0.69% for C, F, and R x HCl, respectively. The proposed method was used successfully for stability testing of the pure drugs in the presence of up to 90% of their degradates, in bulk powder and dosage forms. The results obtained were analyzed statistically and compared with those obtained by the official methods.  相似文献   

6.
Three simple, sensitive, and reproducible spectrophotometric methods (A-C) for the determination of pipazethate hydrochloride (PiCl) in pure form and in pharmaceutical formulations are described. The first and second methods, A and B, are based on the oxidation of the drug by Fe3+ in the presence of o-phenanthroline (o-phen) or bipyridyl (bipy). The formation of tris-complex upon reactions with Fe3+-o-phen and/or Fe3+-bipy mixture in an acetate buffer solution of the optimum pH values was demonstrated at 510 and 522 nm, respectively, with o-phen and bipy. The third method, C, is based on the reduction of Fe(III) by PiCl in acid medium and subsequent interaction of Fe(II) with ferricyanide to form Prussian blue, which exhibits an absorption maximum at 750 nm. The concentration ranges are from 0.5 to 8, 2 to 16, and 3 to 15 microg/mL for Methods A-C, respectively. For more accurate analysis, Ringbom optimum concentration ranges were calculated. The molar absorptivity, Sandell sensitivity, and detection and quantitation limits were calculated. The developed methods were successfully applied to the determination of PiCl in bulk and pharmaceutical formulations without any interference from common excipients. The relative standard deviations were < or =0.83% with recoveries of 98.9-101.15%.  相似文献   

7.
李克 《色谱》2005,23(1):82-84
建立了可同时测定双酚伪麻干混悬剂中盐酸伪麻黄碱和氢溴酸右美沙芬含量的反相高效液相色谱方法。样品先经甲醇溶解,过滤,然后以Lichrospher C6H6化学键合硅胶为固定相、乙腈-水-H3PO4(体积比为50∶50∶0.1,pH 2.5,内含1 g/L十二烷基硫酸钠)为流动相进行色谱分离,在220 nm处定量测定。结果表明,氢溴酸右美沙芬、盐酸伪麻黄碱的质量浓度分别为1.03~206 mg/L和5~200 mg/L时,其峰面积与质量浓度的线性关系良好;批内(n=7)测定的平均相对标准偏差(RSD)分别为1.8%和1.0%,批间(n=5)测定的RSD分别为2.2%和1.5%;对双酚伪麻干混悬剂中氢溴酸右美沙芬、盐酸伪麻黄碱测定回收率分别为100.0%~101.8%和95.7%~98.7%。该法适用于双酚伪麻干混悬剂中氢溴酸右美沙芬和盐酸伪麻黄碱的质量控制及含量测定,方法准确,操作简便。  相似文献   

8.
Three simple, accurate, and sensitive spectrophotometric methods (A, B and C) have been described for the indirect assay of diltiazem hydrochloride (DIL.HCl), either in pure form or in pharmaceutical formulations. The first method (A) is based on the oxidation of DIL.HCl by N-bromosuccinimide (NBS) and determination of unconsumed NBS by measuring the decrease in absorbance of amaranth dye (AM) at a suitable λ max =521 nm. Other methods (B) and (C) involve the addition of excess cerric ammonium sulfate (CAS) and subsequent determination of the unconsumed oxidant by a decrease in the red color of chromotrope 2R (C2R) at a suitable λ max =528 nm or a decrease in the orange-pink color of rhodamine 6G (Rh6G) at λ max =525 nm, respectively. Regression analysis of Beer-Lambert plots showed good correlation in the concentration ranges 3.0–9.0, 3.5–7.0 and 3.5–6.3 μg ml−1 for methods A, B and C, respectively. The apparent molar absorptivity, Sandell's sensitivity, detection and quantification limits were calculated. The proposed methods have been applied successfully for the analysis of the drug in its pure form and its dosage form. No interference was observed from a common pharmaceutical adjuvant. Statistical comparison of the results with the reference method shows excellent agreement and indicates no significant difference in accuracy and precision.  相似文献   

9.
A simple high-performance liquid chromatographic method with ultraviolet detection is proposed for the estimation of diclofenac potassium and drotaverine hydrochloride in human plasma. Liquid-liquid extraction was carried out with a mixture of dichloromethane-isopropyl alcohol (80:20, v/v). Chromatographic separation of the analytes and internal standard was achieved on an analytical 250 × 4.6 mm i.d. reversed-phase Thermo BDS Hypersil C8 (5 μm particle size) column using a mobile phase of acetonitrile-0.02M ammonium acetate buffer (53:47, v/v) at pH 3.5. The run time was less than 15 min. Column eluate was monitored at 230 nm. The linearity over the concentration ranges of 25-1500 ng/mL and 32-960 ng/mL was obtained for diclofenac potassium and drotaverine hydrochloride, respectively. The limit of quantification was 25 and 32 ng/mL for diclofenac potassium and drotaverine hydrochloride, respectively. Recoveries of diclofenac potassium and drotaverine hydrochloride from plasma were 97.45% and 98.27%, respectively.  相似文献   

10.
Four rapid, simple, reproducible and sensitive methods (A-D) for assaying domperidone (I) and metoclopramide (II) in a bulk sample and in dosage forms were investigated. The first and second methods, A and B, are based on the oxidation of I and/or II by Fe3+ in the presence of o-phenanthroline (o-phen) or bipyridyl (bipy). The formation of tris-complex upon reactions with Fe3+-o-phen and/or Fe3+-bipy mixture in an acetate buffer solution of the optimum pH-values was demonstrated. Methods C and D involve the addition of excess Ce4+ and the determination of unreacted oxidant by a decrease of the red color of chromotrope 2R (C2R) at a suitable lambda(max) of 528 nm for method C, or a decrease in the orange pink color of Rhodamine 6G (Rh6G) at a suitable lambda(max) value of 525 nm for method D. A regression analysis of Beer-Lambert plots showed a good correlation in the concentration range of 0.2-5.8 microg ml(-1). The apparent molar absorptivity, Sandell sensitivity, detection and quantification limits were calculated. For a more accurate analysis, the Ringbom optimum concentration ranges are 0.35-5.6 microg ml(-1). The developed methods were successfully applied to the determination of domperidone and metoclopramide in bulk and pharmaceutical preparations without any interference from common excipients.  相似文献   

11.
Three new, different, simple, sensitive, and accurate methods were developed for quantitative determination of nifuroxazide (I) and drotaverine hydrochloride (II) in a binary mixture. The first method was spectrophotometry, which allowed determination of I in the presence of II using a zero-order spectrum with an analytically useful maximum at 364.5 nm that obeyed Beer's law over a concentration range of 2-10 microg/mL with mean percentage recovery of 100.08 +/- 0.61. Determination of II in presence of I was obtained by second derivative spectrophotometry at 243.6 nm, which obeyed Beer's law over a concentration range of 2-10 microg/mL with mean recovery of 99.82 +/- 1.46%. The second method was spectrodensitometry, with which both drugs were separated on a silica gel plate using chloroform-acetone-methanol-glacial acetic acid (6 + 3 + 0.9 + 0.1) as the mobile phase and ultraviolet (UV) detection at 365 nm over a concentration range of 0.2-1 microg/band for both drugs, with mean recoveries of 99.99 +/- 0.15 and 100.00 +/- 0.34% for I and II, respectively. The third method was reversed-phase liquid chromatography using acetonitrile-water (40 + 60, v/v; adjusted to pH 2.55 with orthophosphoric acid) as the mobile phase and pentoxifylline as the internal standard at a flow rate of 1 mU/min with UV detection at 285 nm at ambient temperature over a concentration range of 2-10 microg/mL for both drugs, with mean recoveries of 100.24 +/- 1.51 and 100.08 +/- 0.78% for I and II, respectively. The proposed methods were checked using laboratory-prepared mixtures and were successfully applied for the analysis of pharmaceutical formulations containing the above drugs with no interference from other dosage form additives. The validity of the suggested procedures was further assessed by applying the standard addition technique which was found to be satisfactory, and the percentage recoveries obtained were in accordance with those given by the EVA Pharma reference spectrophotometric method.  相似文献   

12.
A ratio-spectra zero-crossing first-derivative spectrophotometric method and 2 chemometric methods have been used for the simultaneous determination of ternary mixtures of caffeine (A), 8-chlorotheophylline (B), and chlorphenoxamine hydrochloride (C) in bulk powder and dosage forms. In the ratio-spectra zero-crossing first-derivative spectrophotometric technique (1DD), calibration curves were linear in the range of 4-20 microg/mL for A, B, and C (r = 0.9992, 0.9994, and 0.9976, respectively). The measurements were carried out at 212, 209.2, and 231.4 nm for A, B, and C, respectively. The detection limits for A, B, and C were calculated to be 0.24, 0.34, and 0.13 microg/mL, and the percentage recoveries were 99.1 +/- 0.89, 100.1 +/- 0.95, and 100.1 +/- 1.0, respectively. Two chemometric methods, namely, the partial least-squares (PLS) model and the principal component regression (PCR) model, were also used for the simultaneous determination of the 3 drugs in the ternary mixture. A training set consisting of 15 mixtures containing different ratios of A, B, and C was used. The concentration used for the construction of the PLS and PCR models varied between 4 and 25 microg/mL for each drug. These models were used after their validation for the prediction of the concentrations of A, B, and C in mixtures. The detection limits for A, B, and C were calculated to be 0.13, 0.15, and 0.14 microg/mL, respectively, and the percent recoveries were found to be 99.8 micro 0.96, 99.9 micro 0.94, and 99.9 micro 1.18, respectively, for both methods. The 3 proposed procedures are rapid, simple, sensitive, and accurate. No preliminary separation steps or resolution equations are required; thus, they can be applied to the simultaneous determination of the 3 drugs in commercial tablets and suppositories or in quality-control laboratories.  相似文献   

13.
高效液相色谱法测定复方感冒液多组分含量   总被引:2,自引:1,他引:1  
邓思珊  郑金春 《色谱》1997,15(1):51-53
报道了采用高效液相色谱法(HPLC)测定复方感冒液中愈创木酚、扑热息痛、甲基麻黄碱、咖啡因、美沙芬及扑尔敏的含量。色谱柱为ZorbaxODS柱,前4种药物采用的流动相为甲醇-0.05mol/L磷酸二氢钾-磷酸(250∶750∶0.5),检测波长214nm;后2种药物采用的流动相为甲醇-水-磷酸-十二烷基硫酸钠(80∶20∶0.5∶0.2),检测波长260nm。在此色谱条件下,6种药物可获得很好的分离,回收率也高。  相似文献   

14.
《Analytical letters》2012,45(3):565-584
ABSTRACT

Cocaine HCl is a substance which creates psychological and physical dependence. Usually it is available on the market being diluted by other substances, like local anesthetics, analeptics and CNS stimulating agents and inert substance.

In this study, HPLC and GLC methods were applied for qualitative and quantitative determinations of synthetic binary mixtures. In the HPLC determination, μ Bondopack C18 10 μm. column system, a mobile phase consisting of methanol-water-phosphoric acid-1% hexylamine (75:175:250:3,5) and U.V. detection by photodiodearray (196–600 nm) were used.

The linear concentration areas were found in a range of 2.5–25 μg/mL. The R.S.D percentages for cocaine HCl, procaine HCl, lidocaine HCl and caffeine were found as 0.922, 0.568, 1.18 and 1.04, respectively.

In the GLC determination, two different column systems, a 2% OV-17-Gas Chrom W-HP 100–200 mesh filled column and a 0.25 SE-52 fused silica capillary column, were used. Nitrogen was used in a filled column and helium was used in a capillary column. Mobile phase flow rates were set as 30 mL/min and a flame ionization detector was used with both column systems.

The linear concentration intervals were found in a range of 2–25 μL/mL in both methods. The R.S.D. for cocaine HCl, procaine HCl, lidocaine HCl, and caffeine were found to be 0.907, 0.948, 0.770, 0.901 in the filled column. For cocaine HCl, procaine HCl and caffeine R.S.D.'s of 0.774, 0.809, 0.814 were found, when a capillary column was used. In quantitative determinations, antipyrine was chosen as internal standard in the HPLC and GLC methods.  相似文献   

15.
A rapid and simple high-performance liquid chromatographic method with photodiode array detection was developed for the separation and the simultaneous determination of phenytoin and dextromethorphan in human urine. Analysis was performed in less than 4.5 min in isocratic mode on a reversed-phase C18 column (5 microm; 150 x 4.6 mm) using a mobile phase composed of acetonitrile-buffer phosphate 0.01 M (60:40, v/v) adjusted to pH 6.0, at 1 mL/min flow rate and UV absorbance at 210 nm. The elution order of analytes was dextromethorphan (DXM), Internal Standard (IS), and phenytoin (PHT). Calibration curves were linear in the 7.5-25 microg/mL range for PHT and in the 10-30 microg/mL range for DXM. Spike recoveries for urine samples prepared at three spiking levels ranged from 97.8 to 102.3% for PHT and from 94.8 to 100.4% for DXM. The detection limit (LOD) values ranged from 0.08 microg/mL for PHT to 0.5 microg/mL for DXM. The quantitation limit (LOQ) values ranged from 0.3 microg/mL for PHT to 1.6 microg/mL for DXM. The sample preparation method involves a rapid and simple procedure based on solid-phase extraction using a C18 reversed-phase column. Validation of the optimised method was carried out according to the ICH guidelines. The method developed in this study allows the reliable simultaneous analysis of PHT and DXM, drugs that were never quantified together in previously reported analytical methods. The described method has the advantage of being rapid and easy and it could be applied in therapeutic monitoring of these drugs in human urine of epileptic patients.  相似文献   

16.
New selective, precise, and accurate methods are described for the determination of a ternary mixture containing drotaverine hydrochloride (I), caffeine (II), and paracetamol (III). The first method uses the first (D1) and third (D3) derivative spectrophotometry at 331 and 315 nm for the determination of (I) and (III), respectively, without interference from (II). The second method depends on the simultaneous use of the first derivative of the ratio spectra (DD1) with measurement at 312.4 nm for determination of (I) using the spectrum of 40 microg/mL (III) as a divisor or measurement at 286.4 and 304 nm after using the spectrum of 4 microg/mL (I) as a divisor for the determination of (II) and (III), respectively. In the third method, the predictive abilities of the classical least-squares, principal component regression, and partial least-squares were examined for the simultaneous determination of the ternary mixture. The last method depends on thin-layer chromatography-densitometry after separation of the mixture on silica gel plates using ethyl acetate-chloroform-methanol (16 + 3 + 1, v/v/v) as the mobile phase. The spots were scanned at 281, 272, and 248 nm for the determination of (I), (II), and (III), respectively. Regression analysis showed good correlation in the selected ranges with excellent percentage recoveries. The chemical variables affecting the analytical performance of the methodology were studied and optimized. The methods showed no significant interferences from excipients. Intraday and interday assay precision and accuracy values were within regulatory limits. The suggested procedures were checked using laboratory-prepared mixtures and were successfully applied for the analysis of their pharmaceutical preparations. The validity of the proposed methods was further assessed by applying a standard addition technique. The results obtained by applying the proposed methods were statistically analyzed and compared with those obtained by the manufacturer's method.  相似文献   

17.
The mechanism of reaction CI2+2HBr=2HCI+Br2 has been carefully investigated with density functional theory (DFT) at B3LYP/6-311G** level. A series of three-centred and four-centred transition states have been obtained. The activation energy (138.96 and 147.24 kJ/mol, respectively) of two bimolecular elementary reactions CI2+HBr→HCI+BrCI and BrCI+HBr→HCI+Br2 is smaller than the dissociation energy of CI2, HBr and BrCI, indicating that it is favorable for the title reaction occurring in the bimolecular form. The reaction has been applied to the chemical engineering process of recycling Br2 from HBr. Gaseous CI2 directly reacts with HBr gas, which produces gaseous mixtures containing Br2, and liquid Br2 and HCI are obtained by cooling the mixtures and further separated by absorption with CCI4. The recovery percentage of Br2 is more than 96%, and the CI2 remaining in liquid Br2 is less than 3.0%. The paper provides a good example of solving the difficult problem in chemical engineering with basic theory.  相似文献   

18.
Simple, sensitive, and accurate visible spectrophotometric methods are described for the determination of paroxetine hydrochloride (PA) in tablets. Among them, the first 3 methods are based on the ion-pair complexes of PA formed with bromothymol blue (BTB), bromophenol blue (BPB), and bromocresol green (BCG) in aqueous acidic buffers. The complex species extracted into chloroform were quantitatively measured at 414 nm with BTB and BCG and at 412 nm with BPB. Beer's law was obeyed over the concentration ranges of 2-20, 2-16, and 2-16 microg/mL, respectively. The fourth method described is based on a coupling reaction between PA and 7-chloro-4-nitrobenzofurazon (NBD-Cl) in borate buffer, pH 8.5, in which a yellow reaction product that was measured at 478 nm was formed. The Beer's law range for this method was 2-10 microg/mL. The last method developed describes the interaction of PA base, as an n-electron donor, with 7,7,8,8-tetracyanoquinodimethane (TCNQ), as a pi-acceptor, in acetonitrile to give blue-colored TCNQ- radical anion with absorption maxima at 750 and 845 nm. Measured at 845 nm, the absorbance-concentration plot was rectilinear over the range of 1.5-15 microg/mL. The new methods developed were successfully applied to the determination of PA in tablets without any interference from common tablet excipients. The results of the methods were in good agreement with those obtained with an official liquid chromatographic method. This report describes first colorimetric methods for the determination of PA.  相似文献   

19.
A highly sensitive spectrofluorometric method was developed for the determination of verapamil hydrochloride (VP HCl) in pharmaceutical formulations and biological fluids. The proposed method is based on investigation of the fluorescence spectral behavior of VP HCl in micellar systems, such as sodium dodecyl sulfate (SDS) and beta-cyclodextrin (beta-CD). In aqueous solutions of borate buffer of pH 9 and 8.5, VP HCI was well incorporated into SDS and beta-CD, respectively, with enhancement of its native fluorescence. The fluorescence was measured at 318 nm after excitation at 231 nm. The fluorescence intensity enhancements were 183 and 107% in SDS and in beta-CD, respectively. The fluorescence-concentration plots were rectilinear over the range of 0.02-0.2 and 0.02-0.25 microg/mL, with lower detection limits of 5.58 x 10(-3) and 3.62 x 10(-3) microg/mL in SDS and beta-CD, respectively. The method was successfully applied to the analysis of commercial tablets and the results were in good agreement with those obtained with the official method. The method was further applied to the determination of VP HCl in real and spiked human plasma. The mean % recoveries in the case of spiked human plasma (n=4) was 92.59 +/- 3.11 and 88.35 +/- 2.55 using SDS and beta-CD, respectively, while that in real human plasma (n=3) was 90.17 +/- 6.93 and 89.17 +/- 6.50 using SDS and beta-CD, respectively. The application of the method was extended to the stability studies of VP HCl after exposure to ultraviolet radiation and upon oxidation with hydrogen peroxide.  相似文献   

20.
A new HCl hydrolysis/HPLC method, by adopting L9(34) orthogonal test to optimize hydrolysis condition, has been developed for simultaneous determination of three flavonoid aglycones in Elsholtzia blanda benth. The HCl concentration, methanol concentration, hydrolysis temperature, hydrolysis time are taking as four inspecting foctors, and the contents of luteolin, apigenin, and 5-hydroxy-6,7-dimethoxyflavone in hydrolytic solution are used as the evaluation indexes. Agilent Zorbax SB-C18 is used as analytical column. The mobile phase is a mixture of methanol-0.2% phosphoric acid (70:30, v/v), and UV detector is set at 350 nm. The flow rate is 1.0 mL/min, the temperature of column is maintained at 30 degrees C. The optimal hydrolysis conditions are 3.0M HCl, 70% methanol, 85 degrees C hydrolytic temperature and 3 h hydrolytic time. Standard curves are linear over the concentration range 8.54-85.4 microg/mL, 1.2-12 microg/mL, 9.2-92 microg/mL, and their average recoveries are 96.8%, 98.0%, and 100.5% for luteolin, apigenin, 5-hydroxy-6, 7-dimethoxyflavone, respectively. Thus, the optimum hydrolysis condition is relatively gentle, and the HPLC method is proved to be simple, accurate, and sensitive, so it will be able be applied to quality control of medicinal plant of Elsholtzia blanda.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号