首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Branched polyethyleneimine (BPEI) and 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) were used collaboratively to reduce silver nitrate under UV irradiation for the synthesis of positively charged silver nanoparticles. The effects of molar ratio of the ingredients and the molecular weight of BPEI on the particle size and distribution were investigated. The mechanism for the reduction of Ag+ ions in the BPEI/HEPES mixtures entails oxidative cleavage of BPEI chains that results in the formation of positively charged BPEI fragments enriched with amide groups as well as in the production of formaldehyde, which serves as a reducing agent for Ag+ ions. The resultant silver nanoparticles are positively charged due to protonation of surface amino groups. Importantly, these positively charged Ag nanoparticles demonstrate superior SERS activity over negatively charged citrate reduced Ag nanoparticles for the detection of thiocyanate and perchlorate ions; therefore, they are promising candidates for sensing and detection of a variety of negatively charged analytes in aqueous solutions using surface-enhanced Raman spectroscopy (SERS).  相似文献   

2.
A new water‐soluble poly(ethylene imine)‐derivative having imidazolidine moieties was developed. With using branched poly(ethylene imine) (BPEI) as a precursor, it was modified by Michael addition reaction of its primary amino group to an acrylate having poly(ethylene glycol) (PEG) chain. The modified BPEI was reacted with octanal to give the corresponding BPEI derivative having octanal‐derived imidazolidine moieties. The obtained polymer inherited the high hydrophilicity of the attached PEG chains to allow hydrolysis of the imidazolidine moieties under homogeneous conditions in aqueous media, leading to long‐lasting release of octanal. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

3.
The use of sugar‐functionalized polyplexes as a nonviral gene delivery vector with lower cytotoxicity than the well‐known polymeric carrier branched polyethyleneimine (BPEI) is investigated. The substitution of primary amine groups in the BPEI chains with lactose residues leads to larger polyplexes, presumably due to the higher amount of polymer required to complete DNA condensation. Nevertheless, the sugar functionalization substantially reduces the cytotoxicity of the assemblies. The nanocomplexes are taken up by the cells to a greater extent, whereas the levels of gene expression are maintained compared to those obtained using BPEI, which is known for its excellent transfection efficiency. Accordingly, the preparation of lower‐cytotoxicity polyplexes while maintaining gene expression, which is highly relevant to the field, is demonstrated.  相似文献   

4.
在新兴能源的存储与转化技术中,碳量子点作为新一代光吸收组分得到越来越广泛的关注。然而目前关于对碳量子点复合体系界面的改性,进而有效提高碳量子点光敏化性能的研究还较少。在本研究工作中,我们通过一种简单的静电自组装的方法构建催化体系,碳量子点能够很好地分散在枝状聚乙烯亚胺修饰的二氧化钛表面,其中碳量子点在复合体系中质量分数约为5%(w, mass fraction)时,展现出最优的可见光还原对硝基苯胺的活性。整体活性相比没有经过修饰的二氧化钛/碳量子点复合体系以及作为参比的枝状聚乙烯亚胺修饰的二氧化硅/碳量子点复合体系均有较明显的提高。结构与光谱研究表明,碳量子点与聚乙烯亚胺修饰的二氧化钛形成了较好的界面接触;进一步通过对比二氧化硅复合体系与二氧化钛复合体系表明,枝状聚乙烯亚胺可作为电子传输通道,能够有效地促进光生电子的分离与传递。因此,得益于良好的界面接触与有效地光生载流子的传递,相比未修饰的复合体系,枝状聚乙烯亚胺修饰的二氧化钛/碳量子点展现出更好地光催化反应活性。此研究工作中界面优化的手段,可将二氧化钛/碳量子点复合体系进一步拓展到其他宽带隙半导体光催化体系并设计构建有效的碳量子点基的半导体光吸收体系。  相似文献   

5.
In this study, surface‐functionalized, branched polyethylenimine (BPEI)‐modified YVO4:Bi3+,Eu3+ nanocrystals (NCs) were successfully synthesized by a simple, rapid, solvent‐free hydrothermal method. The BPEI‐coated YVO4:Bi3+,Eu3+ NCs with high crystallinity show broad‐band excitation in the λ=250 to 400 nm near‐ultraviolet (NUV) region and exhibit a sharp‐line emission band centered at λ=619 nm under excitation at λ=350 nm. The surface amino groups contributed by the capping agent, BPEI, not only improve the dispersibility and water/buffer stability of the BPEI‐coated YVO4:Bi3+,Eu3+ NCs, but also provide a capability for specifically targeted biomolecule conjugation. Folic acid (FA) and epidermal growth factor (EGF) were further attached to the BPEI‐coated YVO4:Bi3+,Eu3+ NCs and exhibited effective positioning of fluorescent NCs toward the targeted folate receptor overexpressed in HeLa cells or EGFR overexpressed in A431 cells with low cytotoxicity. These results demonstrate that the ligand‐functionalized, BPEI‐coated YVO4:Bi3+, Eu3+ NCs show great potential as a new‐generation biological luminescent bioprobe for bioimaging applications. Moreover, the unique luminescence properties of BPEI‐coated YVO4:Bi3+,Eu3+ NCs show potential to combine with a UVA photosensitizing drug to produce both detective and therapeutic effects for human skin cancer therapy.  相似文献   

6.
以钠蒙脱土分散液作为模拟钻井液,与支化聚乙烯亚胺聚合物溶液交替流过模拟井壁(硅片),模拟生物矿化过程,进行层层沉积模拟实验。通过原子力显微镜、扫描电镜、红外光谱、X射线衍射等手段跟踪钠蒙脱土/聚乙烯亚胺复合膜的成膜过程,并表征复合膜的形貌、微观结构、化学组成及力学性能。结果表明,钠蒙脱土和聚乙烯亚胺可自发在模拟井壁上形成结构致密的有机/无机复合膜,该复合膜具有明显的层状结构,平均每层厚度约为46.18nm。该复合膜力学性能优良,而且杨氏模量并不随沉积层数的增加而变化。通过动态滤失实验表明,层层沉积改善了滤饼质量,降低了滤失速率以及总的动态滤失量,有助于井壁稳定。  相似文献   

7.
A branched polyethyleneimine (BPEI) was applied to poly(ethylene terephthalate)(PET) fabric to improve its surface moisture absorption so that the fabric becomes lessliable to retention of electrostatic charg. The durability of this treatment was assessed bywashing and followed by measurement of charge development on the fabric. The treatedsamples showed improved surface wetting compared to the untreated. The results areconsistent with attachment of the BPEI to the PET surface by a cross-linking mechanism.  相似文献   

8.
    
Studies on the luminescence quenching of Ru(phen)32+ (phen = 1,10-phenanthroline) by the polymer-cobalt(III) complex ions, cis-[Co(phen)2(BPEI)Cl]2+ and cis-[Co(bpy)2(BPEI)Cl]2+ (bpy = 2,2′-bipyridine, BPEI = branched polyethyleneimine) in DNA as well as in various micellar media by steady-state emission spectroscopic technique have been reported. The quenching rate constants were arrived through Stern-Volmer equation. The results have been analysed based on hydrophobic as well as electrostatic binding between polymer-cobalt(III) complexes and DNA/micelles.  相似文献   

9.
We report on the binding of metal ions (Me(2+); Co(2+) and Cu(2+)) with weak polyelectrolyte multilayers (PEMs), as well as on catalytic activity of PEM-Me(2+) films for oxidation of toluene. Using several types of PEM films constructed using branched polyethyleneimine (BPEI) or quaterinized poly-4-vinylpyridines (QPVPs) as polycations and poly(acrylic acid) (PAA) or poly(styrene sulfonate) (PSS) as polyanions, we found that binding of Co(2+) and Cu(2+) ions with a PEM matrix can occur both through coordination to polycationic amino groups and/or ionic binding to polyacid groups. The amount of metal ions loaded within the film increased linearly with film thickness and was strongly dependent on polyelectrolyte type, film assembly pH, and fraction of permanent charge in polymer chains. Among various PEM-Me(2+) systems, BPEI/PAA-Co(2+) films assembled at pH 8.5 show the best catalytic performance, probably because of the preservation of high mobility of Co(2+) ions coordinated to amino groups of BPEI in these films. With BPEI/PAA-Co(2+) films, we demonstrated that films were highly permeable to reagents and reaction products within hundreds of nanometers of the film bulk; i.e., film catalytic activity increased linearly with layer number up to 30 bilayers and slowed for thicker films.  相似文献   

10.
彭懋 《高分子科学》2014,32(3):305-314
A novel intumescent flame retardant coating,consisting of poly(vinylphosphonic acid)(PVPA) as the acid source and branched polyethylenimine(BPEI) as the blowing agent,was constructed on the surface of ramie fabrics by alternate assembly to remarkably improve the flame retardancy of ramie.The PVPA/BPEI coating on the surface of individual fibers of ramie fabric pyrolyzes to form protective char layer upon heating/burning and improves the flame retardancy of ramie.Thermogravimetric analysis reveals that the PVPA/BPEI-coated ramie fabrics left as much as 25.8 wt% residue at 600 °C,while the control(uncoated) fabric left less than 1.4 wt% residue.Vertical flame test shows that all PVPA/BPEI-coated fabrics have shorter after-flame time,and the residues well preserved the original weave structure and fiber morphology,whereas,the uncoated fabric left only ashes.Microscale combustion calorimetry shows that the PVPA/BPEI coatings greatly reduce the total heat release by as much as 66% and the heat release capacity by 76%,relative to those of the uncoated fabric.  相似文献   

11.
Raman and infrared spectroscopy were used to study the nature of hydrogen bonding and the cation inductive effect in solutions of LiCF(3)SO(3) dissolved in hexylamine, a primary amine, and dipropylamine, a secondary amine. Comparison of pure hexylamine and hexylamine dissolved in CCl(4) established that the Raman band maximum of the symmetric stretching mode, nu(s)(NH(2)), in pure hexylamine originates in molecules undergoing no hydrogen bonding interactions. The addition of LiCF(3)SO(3) to hexylamine or dipropylamine shifts the frequencies of the solvent NH stretching modes by two effects: the breaking of hydrogen bonds and the cation inductive effect. Comparison of the infrared and Raman spectra allows (to some degree) the separation of these two effects. During these studies, crystalline compounds of hexylamine:LiCF(3)SO(3) and dipropylamine:LiCF(3)SO(3) were discovered, and their structures were solved by single-crystal X-ray diffraction techniques. Vibrational spectra of these crystals and detailed structural knowledge of the cation-solvent interactions complement analogous spectroscopic studies of the solution phases. The cation-polymer and hydrogen bonding interactions of branched poly(ethylenimine) (BPEI) complexed with LiCF(3)SO(3) were modeled by the solutions of hexylamine and dipropylamine containing dissolved LiCF(3)SO(3). Specifically, lithium ion interactions with the primary and secondary amine groups in BPEI were modeled by the solution studies with hexylamine and dipropylamine, respectively. The analysis of the hexylamine system was particularly useful because the primary amine group of BPEI dominates the NH stretching region of the spectrum.  相似文献   

12.
The aim of this study is to establish the safe and effective ocular delivery system of therapeutic small interfering RNA (siRNA) in corneal neovascularization therapy. The major hurdle present in siRNA‐based corneal neovascularization (CNV) therapy is severe cytotoxicity caused by repetitive drug treatment. A reducible branched polyethylenimine (rBPEI)‐based nanoparticle (NP) system is utilized as a new siRNA carrier as a hope for CNV therapy. The thiolated BPEI is readily self‐crosslinked in mild conditions to make high molecular weight rBPEI thus allowing the creation of stable siRNA/rBPEI nanoparticles (siRNA‐rBPEI‐NPs). In the therapeutic region, the rBPEI polymeric matrix is effectively degraded into nontoxic LMW BPEI inside the reductive cytosol causing the rapid release of the encapsulated siRNA into the cytosol to carry out its function. The fluorescent‐labeled siRNA‐rBPEI‐NPs can release siRNA into the entire corneal region after subconjuctival injection into the eye of Sprague Dawley rats thus confirming the proof of concept of this system.

  相似文献   


13.
The impact of ethyleneimine architecture on the adsorption behavior of mixtures of small poly(ethyleneimines) and oligoethyleneimines (OEIs) with the anionic surfactant sodium dodecylsulfate (SDS) at the air-solution interface has been studied by surface tension (ST) and neutron reflectivity (NR). The strong surface interaction between OEI and SDS gives rise to complex surface tension behavior that has a pronounced pH dependence. The NR data provide more direct access to the surface structure and show that the patterns of ST behavior are correlated with substantial OEI/SDS adsorption and the spontaneous formation of surface multilayer structures. The regions of surface multilayer formation depend upon SDS and OEI concentrations, on the solution pH, and on the OEI architecture, linear or branched. For the linear OEIs (octaethyleneimine, linear poly(ethyleneimine) or LPEI(8), and decaethyleneimine, LPEI(10)) with SDS, surface multilayer formation occurs over a range of OEI and SDS concentrations at pH 7 and to a much lesser extent at pH 10, whereas at pH 3 only monolayer adsorption occurs. In contrast, for branched OEIs BPEI(8) and BPEI(10) surface multilayer formation occurs over a wide range of OEI and SDS concentrations at pH 3 and 7, and at pH 10, the adsorption is mainly in the form of a monolayer. The results provide important insight into how the OEI architecture and pH can be used to control and manipulate the nature of the OEI/surfactant adsorption.  相似文献   

14.
Cationic hyperbranched BPEI was immobilized on the surface of MWNTs via electrostatic interactions between the positively charged protonated amines within the polymer and the carboxyl groups on the chemically oxidized MWNT surface. The functionalized BPEI‐MWNTs were characterized by FT‐IR, TGA, TEM and surface charge analysis, and it was used as a bio‐sorbent for the adsorption of proteins. CD spectra showed no conformational change of BSA during the adsorption/desorption process. A dynamic adsorption capacity of 167 mg · g?1 for BSA was achieved. With a sample volume of 2.0 mL, an enrichment factor of 10 was obtained along with an adsorption efficiency of 100%, a recovery of 100%, a sampling frequency of 10 h?1 and a RSD of 2.6% at 25 µg · mL?1 BSA.

  相似文献   


15.
Positively charged silver nanoparticles, Ag [+], obtained by UV-assisted reduction of silver nitrate using branched poly(ethyleneimine) (BPEI) and 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) solutions as reducing agents, were immobilized on glass surfaces to produce substrates active in surface-enhanced Raman scattering (SERS). Negatively charged silver nanoparticles, Ag [-], synthesized via a modified citrate reduction method, were also investigated for comparison. At a sparse surface coverage of 30 nanoparticles/microm(2), substrates with immobilized Ag [+] showed increasing SERS sensitivity to a variety of anions in water in the order SO(4)(2-) < CN(-) < SCN(-) approximately ClO(4)(-), with corresponding binding constants of 10(5), 3.3 x 10(5), and 10(7) (for both SCN- and ClO(4)(-)) M(-1), respectively. This order followed the Hofmeister series of anion binding in water. Significantly, substrates with Ag [+] allowed limit of detection values of 8.0 x 10(-8) M (8 ppb) and 2.7 x 10(-7) M (7 ppb) for environmentally relevant perchlorate (ClO(4)(-)) and cyanide (CN(-)) anions, respectively. In contrast, substrates with immobilized Ag [-], even upon subsequent modification by a monolayer of BPEI for positive surface charge of the nanoparticles, showed a drastically lower sensitivity to these anions. The high sensitivity of substrates with Ag [+] for anion detection can be attributed to the presence of two types of functional groups, amino and amide, on the nanoparticle surface resulting from UV-assisted fragmentation of BPEI chains. Both amino and amide provide strong binding of anions with Ag [+] nanoparticles due to the synergistic effect through a combination of electrostatic, hydrogen bonding, and dispersive interactions.  相似文献   

16.
The multilayer films of branched polyethyleneimine (BPEI) and poly(acrylic acid) (PAA) have been fabricated with the layer-by-layer (LbL) method. Two characteristic courses of the film thickness growth are observed, which are the initial exponential-like growth and the following linear growth. The variation of the COOH/COO- ratio indicates that the ionization degree of the polyelectrolyte molecules decreases at the initial stage of the multilayer buildup and then levels off after about eight bilayers. The as-prepared (BPEI/PAA)n films show a relatively smooth surface. However, great morphology changes occur after immersing these films in Cu2+ or Zn2+ solution. In the case of n > or =7, wavelike surface patterns are induced to form on the films. Both wavelength and fluctuation of these surface patterns show a systematical variation with an increase of the bilayer number. Moreover, thermal treatment can stabilize these patterns and enable the preservation of them after releasing the Cu2+ ions from the LbL films by acidic treatment. Interestingly, only Cu2+ and Zn2+ can induce the formation of such surface patterns, whereas Fe2+, Ca2+, Ag+, and Na+ cannot. This phenomenon may closely relate to the different natures of the metal ions.  相似文献   

17.
《Electroanalysis》2017,29(9):2098-2105
An ultrasensitive electrochemiluminescence (ECL) immunosensor for the detection of tetrodotoxin (TTX) is proposed, which are composed of the branched poly‐(ethylenimine) (BPEI) functionalized graphene (BGNs)/Fe3O4‐Au magnetic capture probes and luminol‐capped gold nanocomposites (luminol‐AuNPs) as the signal tag. Herein, a typical sandwich immunecomplex was constructed on the glassy carbon electrode. The BGNs/Fe3O4‐Au hybrids could efficiently conjugate primary antibody via the Au−S chemical bonds or Au−N chemical bonds and rapidly separate under external magnetic field. The introduction of BPEI to GO could enhance the luminol‐ECL intensity. Meanwhile, the multifunctional nanocomposites have been proved with good water‐solubility, excellent electron transfer, outstanding stability, etc. The luminescent luminol‐AuNPs, a high efficient electrochemiluminescence marker, can be assembled on the second antibody, which can produce the ECL signal to achieve the determination of TTX. This proposed ECL immunosensor with a linear range from 0.01–100 ng/mL can be applied in the detection of TTX in real samples with satisfactory results.  相似文献   

18.
Bio-based multi-functional epoxides (1) such as bis-, tri-, and tetra-epoxides were synthesized by ene-thiol reactions between limonene oxide and polyhydric thiols. A cross-linking reaction of 1 with branched polyethyleneimine (BPEI) afforded the corresponding network polymers 2 with relatively high thermal resistance in high yields.  相似文献   

19.
We propose a method for the modification of surfaces of microchannels in chips fabricated in polycarbonate (PC) that makes the devices resistant to a range of organic solvents. Coating of PC with branched polyethyleneimine (BPEI) with the use of trimethylpropane triglycidyl ether (TTE) as a linker renders the devices resistant to toluene, benzene, acetonitrile, tetrahydrofuran, dioxane and ethylene dichloride. The optimized procedure of modification allows for continuous operation of the chips for several hours without dissolution of PC. Additional modification with the use of Krytox? allows for the use of Fluorinert (FC-40) as the continuous phase and for generation and handling of droplets of organic solvents that are miscible with water.  相似文献   

20.
The influence of capping agents on the oxidation of silver nanoparticles was studied by using the electrochemical techniques of anodic stripping voltammetry and anodic particle coulometry (“nano‐impacts”). Five spherical silver nanoparticles each with a different capping agent (branched polyethylenimine (BPEI), citrate, lipoic acid, polyethylene glycol (PEG) and polyvinylpyrrolidone (PVP)) were used to perform comparative experiments. In all cases, regardless of the capping agent, complete oxidation of the single nanoparticles was seen in anodic particle coulometry. The successful quantitative detection of the silver nanoparticle size displays the potential application of anodic particle coulometry for nanoparticle characterisation. In contrast, for anodic stripping voltammetry using nanoparticles drop casting, it was observed that the capping agent has a very significant effect on the extent of silver oxidation. All five samples gave a low oxidative charge corresponding to partial oxidation. It is concluded that the use of anodic stripping voltammetry to quantify nanoparticles is unreliable, and this is attributed to nanoparticle aggregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号