首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We demonstrate and characterize a cryogenic buffer gas-cooled molecular beam source capable of producing bright beams of free radicals and refractory species. Details of the beam properties (brightness, forward velocity distribution, transverse velocity spread, rotational and vibrational temperatures) are measured under varying conditions for the molecular species SrF. Under typical conditions we produce a beam of brightness 1.2 × 10(11) molecules/sr/pulse in the X(2)Σ(+)(v = 0, N(rot) = 0) state, with 140(m/s) forward velocity and a rotational temperature of ≈ 1 K. This source compares favorably to other methods for producing beams of free radicals and refractory species for many types of experiments. We provide details of construction that may be helpful for others attempting to use this method.  相似文献   

2.
Cryogenically cooled buffer gas beam sources of the molecule thorium monoxide (ThO) are optimized and characterized. Both helium and neon buffer gas sources are shown to produce ThO beams with high flux, low divergence, low forward velocity, and cold internal temperature for a variety of stagnation densities and nozzle diameters. The beam operates with a buffer gas stagnation density of ~10(15)-10(16) cm(-3) (Reynolds number ~1-100), resulting in expansion cooling of the internal temperature of the ThO to as low as 2 K. For the neon (helium) based source, this represents cooling by a factor of about 10 (2) from the initial nozzle temperature of about 20 K (4 K). These sources deliver ~10(11) ThO molecules in a single quantum state within a 1-3 ms long pulse at 10 Hz repetition rate. Under conditions optimized for a future precision spectroscopy application [A. C. Vutha et al., J. Phys. B: At., Mol. Opt. Phys., 2010, 43, 074007], the neon-based beam has the following characteristics: forward velocity of 170 m s(-1), internal temperature of 3.4 K, and brightness of 3 × 10(11) ground state molecules per steradian per pulse. Compared to typical supersonic sources, the relatively low stagnation density of this source and the fact that the cooling mechanism relies only on collisions with an inert buffer gas make it widely applicable to many atomic and molecular species, including those which are chemically reactive, such as ThO.  相似文献   

3.
We have developed a source of cold LiH molecules for Stark deceleration and trapping experiments. Lithium metal is ablated from a solid target into a supersonically expanding carrier gas. The translational, rotational, and vibrational temperatures are 0.9+/-0.1, 5.9+/-0.5, and 468+/-17 K, respectively. Although they have not reached thermal equilibrium with the carrier gas, we estimate that 90% of the LiH molecules are in the ground state, X (1)Sigma(+)(v=0,J=0). With a single 7 ns ablation pulse, the number of molecules in the ground state is 4.5+/-1.8 x 10(7) molecules/sr. A second, delayed, ablation pulse produces another LiH beam in a different part of the same gas pulse, thereby almost doubling the signal. A long pulse, lasting 150 micros, can make the beam up to 15 times more intense.  相似文献   

4.
The authors realize a novel high flux source of cold atoms and molecules employing hydrodynamic enhancement of an effusive aperture at cryogenic temperatures. Molecular oxygen from the source is coupled to a magnetic guide, delivering a cold, continuous, guided flux of 3 x 10(12) O(2) s(-1). The dynamics of the source are studied by creating and spectroscopically analyzing high flux beams of atomic ytterbium.  相似文献   

5.
We report the acceleration and deceleration of H(2) molecules in a supersonic molecular beam by means of its interaction with an intense optical gradient from a nanosecond far-off-resonant optical pulse. The strong optical gradients are formed in the interference pattern of two intense optical pulses at 532 nm. The velocity distribution of the molecular beam, before and after the applied optical pulse, is measured by a velocity-mapped ion imaging technique. Changes in velocity up to 202 m s(-1)+/- 61 m s(-1) are observed in a molecular beam initially travelling at a mean speed of 563 m s(-1). We report the dependence of this change in velocity with the strength of the optical gradient applied.  相似文献   

6.
We have studied, via laser absorption spectroscopy, the velocity distribution of (7)Li atoms released from cryogenic matrices of solid neon or molecular hydrogen. The Li atoms are implanted into the Ne or H(2) matrices--grown onto a sapphire substrate--by laser ablation of a solid Li or LiH precursor. A heat pulse is then applied to the sapphire substrate sublimating the matrix together with the isolated atoms. With a NiCr film resistor deposited directly onto the sapphire substrate we are able to transfer high instantaneous power to the matrix, thus reaching a fast sublimation regime. In this regime the Li atoms can get entrained in the released matrix gas, and we were also able to achieve matrix sublimation times down to 10 μs for both H(2) or Ne matrix, enabling us to proceed with the trapping of the species of our interest such as atomic hydrogen, lithium, and molecules. The sublimation of the H(2) matrix, with its large center-of-mass velocity, provides evidence for a new regime of one-dimensional thermalization. The laser ablated Li seems to penetrate the H(2) matrix deeper than it does in Ne.  相似文献   

7.
We present differential angular cross sections for O(3P) + Ar(1S) scattering at collision energies near 90 kcal mol(-1) (approximately 8 km s(-1) relative velocity) from molecular beam measurements and high-level theoretical calculations. Beams of hyperthermal O(3P) are now being used to investigate novel gas-phase and gas-surface chemistries, and the comparison of theory and measurements on this simple system will be a stringent test of the experimental methodology. Potential energy curves were generated for O(3P) + Ar(1S) using a large cc-pVQZ basis within a valence multi-configuration plus perturbation theory treatment. These curves were then used in quantum scattering calculations to generate differential cross sections. Agreement between experiment and theory is excellent. In addition to these comparisons, the cross sections were used in direct simulation Monte Carlo calculations to investigate effects of increasing the Ar flux above the "single-collision" regime. As the Ar flux increases, the observed differential angular cross sections change in two ways. In addition to the main "single-scatter" peak along the incident O-atom beam direction, a secondary O-atom peak appears in the direction of the incident Ar beam, and the multiple-scattered O-atom translational energy starts to reflect the energy of the relatively slow moving Ar beam.  相似文献   

8.
Preparation of a high flux of hydrogen molecules in a specific vibrationally excited state is the major prerequisite and challenge in scattering experiments that use vibrationally excited hydrogen molecules as the target. The widely used scheme of stimulated Raman pumping suffers from coherent population return which severely limits the excitation efficiency. Re-cently we successfully transferred D2 molecules in the molecular beam from (v=0, J=0) to (v=1, J=0) level, with the scheme of Stark-induced adiabatic Raman passage. As high as 75% of the excitation efficiency was achieved. This excitation technique promise to be a unique tool for crossed beam and beam-surface scattering experiments which aim to reveal the role of vibrational excitation of hydrogen molecules in the chemical reaction.  相似文献   

9.
This work describes a novel surface-scattering technique which combines resonance enhanced multiphoton ionization (REMPI) with velocity-map imaging (VMI) to yield quantum-state and 2D velocity component resolved distributions in the scattered molecular flux. As an initial test system, we explore hyperthermal scattering (E(inc) = 21(5) kcal mol(-1)) of jet cooled HCl from Au(111) on atomically flat mica surfaces at 500 K. The resulting images reveal 2D (v(in-plane) and v(out-of-plane)) velocity distributions dominated by two primary features: trapping/thermal-desorption (TD) and a hyperthermal, impulsively scattering (IS) distribution. In particular, the IS component is strongly forward scattered and largely resolved in the velocity map images, which allows us to probe correlations between rotational and translational degrees of freedom in the IS flux without any model dependent deconvolution from the TD fraction. These correlations reveal that HCl molecules which have undergone a large decrease in velocity parallel to scattering plane have actually gained the most rotational energy, reminiscent of a dynamical energy constraint between these two degrees of freedom. The data are reduced to a rotational energy map that correlates with velocity along and normal to the scattering plane, revealing that exchange occurs primarily between rotation and the in-plane kinetic energy component, with v(out-of-plane) playing a relatively minor role.  相似文献   

10.
A method for generating energetic beams of CF3I molecules and CF3 radicals was described. The method is based on the formation of pressure shock in front of a solid surface due to the impact of an intense, pulsed, gas-dynamically cooled molecular beam (or flow) on this surface and its use as a source of a secondary beam for producing energetic molecules. The secondary beam was formed upon efflux of molecules from the pressure shock through an orifice into a high-vacuum chamber compartment. The accelerated CF3I molecular beam was generated by exciting the molecules with a powerful IR laser pulse in the pressure shock (in the secondary-beam source itself) and the beam of energetic CF3 radicals was produced through the dissociation of CF3I in either the pressure shock or the accelerated beam. High-density (1020 molecule/(sr s)) beams of CF3I molecules and CF3 radicals with a kinetic energy of 1.2 and 0.4 eV, respectively, were obtained.  相似文献   

11.
M. Yamaki  K. Hoki  H. Kono  Y. Fujimura   《Chemical physics》2008,347(1-3):272-278
Rotational mechanisms of a chiral molecular motor driven by femtosecond laser pulses were investigated on the basis of results of a quantum control simulation. A chiral molecule, (R)-2-methyl-cyclopenta-2,4-dienecarboaldehyde, was treated as a molecular motor within a one-dimensional model. It was assumed that the motor is fixed on a surface and driven in the low temperature limit. Electric fields of femtosecond laser pulses driving both regular rotation of the molecular motor with a plus angular momentum and reverse rotation with a minus one were designed by using a global control method. The mechanism of the regular rotation is similar to that obtained by a conventional pump–dump pulse method: the direction of rotation is the same as that of the initial wave packet propagation on the potential surface of the first singlet (nπ*) excited state S1. A new control mechanism has been proposed for the reverse rotation that cannot be driven by a simple pump–dump pulse method. In this mechanism, a coherent Stokes pulse creates a wave packet localized on the ground state potential surface in the right hand side. The wave packet has a negative angular momentum to drive reverse rotation at an early time.  相似文献   

12.
Femtosecond laser pulse control of exciton dynamics in biological chromophore complexes is studied theoretically using the optimal control theory specified to open quantum systems. Based on the laser pulse induced formation of an excitonic wave packet the possibility to localize excitation energy at a certain chromophore within a photosynthetic antenna system (FMO complex of green bacteria) is investigated both for linearly polarized and polarization shaped pulses. Results are presented for an ensemble of N energetically disordered and randomly oriented FMO complexes. Here, the optimized control pulse represents a compromise with respect to the solution of the control task for any individual complex of the ensemble. For the case of an ensemble with N=10 members the polarization shaped control pulse leads to a higher control yield compared with a linearly polarized pulse. This difference becomes considerably smaller for an ensemble with N=120 members. The respective optimized pulses are used to drive excitation energy in a different ensemble with MN complexes to simulate the usual experimental condition in solution. For the case with N=120, the relative control yield coincides with the resulting control yield “in solution”, giving a slightly higher control yield for polarization shaped pulses.  相似文献   

13.
A reactive ionized cluster beam technique (RICB) which was composed of a conventional ICB source and a radical beam source has been used to deposit stable and metastable polycrystalline AlNx (0x1) films. Using in-situ high energy electron diffraction (HEED) at grazing incidence geometry, crystallographic properties such as structure, preferred orientation and interplanar dspacing values were determined and the relation to deposition parameters investigated. It could be shown that the simultaneous use of the ICB technique and a radical beam source to separately control the kinetic energy of the Al ions and the dissociation rate of molecular nitrogen, allows AlN films to be deposited with variable composition and crystal structures. In-situ HEED used in the transmission mode is an effective tool to investigate the crystallography of growing compound films such as AlNx.  相似文献   

14.
We have studied, via laser absorption spectroscopy, the velocity distribution of (7)Li atoms released from a solid neon matrix at cryogenic temperatures. The Li atoms are implanted into the Ne matrix by laser ablation of a solid Li precursor. A heat pulse is then applied to the sapphire substrate sublimating the matrix together with the isolated atoms at around 12 K. We find interesting differences in the velocity distribution of the released Li atoms from the model developed for our previous experiment with Cr [R. Lambo, C. C. Rodegheri, D. M. Silveira, and C. L. Cesar, Phys. Rev. A 76, 061401(R) (2007)]. This may be due to the sublimation regime, which is at much lower flux for the Li experiment than for the Cr experiment, as well as to the different collisional cross sections between those species to the Ne gas. We find a drift velocity compatible with Li being thermally sublimated at 11-13 K, while the velocity dispersion around this drift velocity is low, around 5-7 K. With a slow sublimation of the matrix we can determine the penetration depth of the laser ablated Li atoms into the Ne matrix, an important information that is not usually available in most matrix isolation spectroscopy setups. The present results with Li, together with the previous results with Cr suggest this to be a general technique for obtaining cryogenic atoms, for spectroscopic studies, as well as for trap loading. The release of the isolated atoms is also a useful tool to study and confirm details of the matrix isolated atoms which are masked or poorly understood in the solid.  相似文献   

15.
We study a method for controlling the flow of excitation through decaying levels in a three-level ladder excitation scheme in Na(2) molecules. Like the stimulated Raman adiabatic passage (STIRAP), this method is based on the control of the evolution of adiabatic states by a suitable delayed interaction of the molecules with two radiation fields. However, unlike STIRAP, which transfers a population between two stable levels g and f via a decaying intermediate level e through the interaction of partially overlapping pulses (usually in a Lambda linkage), here the final level f is not long lived. Therefore, the population reaching level f decays to other levels during the transfer process. Thus, rather than controlling the transfer into level f, we control the flow of the population through this level. In the present implementation a laser P couples a degenerate rovibrational level in the ground electronic state X 1Sigma(g)+, v" = 0, j" = 7 to the intermediate level A 1Sigma(u)+, v' = 10, J' = 8, which in turn is linked to the final level 5 1Sigma(g)+, v = 10, J = 9 by a laser S, from which decay occurs to vibrational levels in the electronic A and X states. As in STIRAP, the maximum excitation flow through level f is observed when the P laser precedes the S laser. We study the influence of the laser parameters and discuss the consequences of the detection geometry on the measured signals. In addition to verifying the control of the flow of population through level f we present a procedure for the quantitative determination of the fraction kappa(f) of molecules initially in the ground level which is driven through the final level f. This calibration method is applicable for any stepwise excitation.  相似文献   

16.
17.
Separation of colloidal particles of different sizes is becoming increasingly important due to rapid developments in the area of proteomics, genetic engineering, drug discovery, etc. In particular, there is a need to accomplish these separations on a microscale in 'lab-on-a-chip' devices. In this paper, we propose a new method for accomplishing separation of charged colloids of different sizes in a microchannel. This method involves a combination of pulses of lateral electric fields and Poiseuille flow in the axial direction. We develop a model for this separation technique and obtain closed form solutions for the mean velocity and the dispersion coefficient for a pulse of molecules introduced into the channel. These expressions are then utilized to determine the channel length and the separation time. For reasonable value of design constants, the proposed technique can separate molecules of different sizes that have diffusivities of 10(-10) and 0.5 x 10(-10) m2/s in 15.7 s in a 3.7 mm long channel. The length and the time increase to 5.45 cm and 231 s if the ratio of the diffusivities is reduced from 2 to 1.2, i.e., the latter diffusivity is increased to 0.835 x 10(-10) m2/s, while keeping all the other parameters the same. If the diffusivities are about 10(-9) m(2)/s, the length and the time for separation are 1 cm and 17.5 s for D1/D2=2, and 16 cm and 269 s for D1/D2=1.2.  相似文献   

18.
Rotationally resolved, velocity distributions for desorbed O2 molecules formed by O-atom recombination on the surface of a polycrystalline Ag surface are reported. Surface O atoms are generated by oxygen permeation through a 0.25-mm-thick Ag foil heated to 1020 K. Desorbing O2 molecules are probed by (2 + 1) resonant multiphoton ionization via the C 3Pig (3ssigma), v' = 2 <-- <-- X 3Sigmag-, v" = 0 transition and time-of-flight mass spectrometry. Measured velocity distributions are near Maxwell-Boltzmann and yield average translational energies which are significantly lower than the surface temperature ([Et]/2kB approximately 515 K) and essentially independent of rotational excitation. Comparison of the observed C-X (2,0) resonantly enhanced multiphoton ionization spectrum with spectral simulations suggests that the v" = 0 rotational state distribution is more consistent with the surface temperature, but spectral congestion and apparent intensity perturbations prevent a more quantitative analysis. The calculated, sticking curves show a small barrier energy barrier (approximately 10 meV) beyond which sticking decreases. These observations are consistent with low energy desorption and adsorption pathways involving a weakly bound molecular O2 precursor.  相似文献   

19.
We have implemented the velocity map imaging technique to study clustering in the pulsed supersonic expansions of hydrogen bromide in helium, argon, and xenon. The expansions are characterized by direct imaging of the beam velocity distributions. We have investigated the cluster generation by means of UV photodissociation and photoionization of HBr molecules. Two distinct features appear in the hydrogen atom photofragment images in the clustering regime: (i) photofragments with near zero kinetic energies and (ii) "hot" photofragments originating from vibrationally excited HBr molecules. The origin of both features is attributed to the fragment caging by the cluster. We discuss the nature of the formed clusters based on the change of the photofragment images with the expansion parameters and on the photoionization mass spectra and conclude that single HBr molecule encompassed with rare gas "snowball" is consistent with the experimental observations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号