首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A protein can be in different conformations when fulfilling its function. Yet depiction of protein structural ensembles remains difficult. Here we show that the accurate measurement of solvent paramagnetic relaxation enhancement (sPRE) in the presence of an inert paramagnetic cosolute allows the assessment of protein dynamics. Demonstrated with two multi‐domain proteins, we present a method to characterize protein microsecond–millisecond dynamics based on the analysis of the sPRE. Provided with the known structures of a protein, our method uncovers an ensemble of structures that fully accounts for the observed sPRE. In conjunction with molecular dynamics simulations, our method can identify protein alternative conformation that has only been theorized before. Together, our method expands the application of sPRE beyond structural characterization of rigid proteins and complements the established PRE NMR technique.  相似文献   

2.
Determination of the environment surrounding a protein is often key to understanding its function and can also be used to infer the structural properties of the protein. By using proton-detected solid-state NMR, we show that reduced spin diffusion within the protein under conditions of fast magic-angle spinning, high magnetic field, and sample deuteration allows the efficient measurement of site-specific exposure to mobile water and lipids. We demonstrate this site specificity on two membrane proteins, the human voltage dependent anion channel, and the alkane transporter AlkL from Pseudomonas putida. Transfer from lipids is observed selectively in the membrane spanning region, and an average lipid-protein transfer rate of 6 s−1 was determined for residues protected from exchange. Transfer within the protein, as tracked in the 15N-1H 2D plane, was estimated from initial rates and found to be in a similar range of about 8 to 15 s−1 for several resolved residues, explaining the site specificity.  相似文献   

3.
4.
Characterization of the conformational ensemble of disordered proteins is highly important for understanding protein folding and aggregation mechanisms, but remains a computational and experimental challenge owing to the dynamic nature of these proteins. New observables that can provide unique insights into transient residual structures in disordered proteins are needed. Here using denatured ubiquitin as a model system, NMR solvent paramagnetic relaxation enhancement (sPRE) measurements provide an accurate and highly sensitive probe for detecting low populations of residual structure in a disordered protein. Furthermore, a new ensemble calculation approach based on sPRE restraints in conjunction with residual dipolar couplings (RDCs) and small‐angle X‐ray scattering (SAXS) is used to define the conformational ensemble of disordered proteins at atomic resolution. The approach presented should be applicable to a wide range of dynamic macromolecules.  相似文献   

5.
Long‐lived coherences (LLCs) are known to have lifetimes much longer than transverse magnetization or single quantum coherences (SQCs). The effect of paramagnetic ions on the relaxation of LLCs is not known. This is particularly important, as LLCs have potential applications in various fields like analytical NMR, in vivo NMR and MR imaging methods. We study here the behaviour of LLCs in the presence of paramagnetic relaxation agents. The stepwise increase in the concentration of the metal ion is followed by measuring various relaxation rates. The effect of paramagnetic ions is analysed in terms of the external random field’s contribution to the relaxation of two coupled protons in 2,3,6‐trichlorobenzaldehyde. The LLCs relax faster than ordinary SQCs in the presence of paramagnetic ions of varying character. This is explained on the basis of an increase in the contribution of the external random field to relaxation due to a paramagnetic relaxation mechanism. Comparison is also made with ordinary Zeeman relaxation rates like R1, R2, R and also with rate of relaxation of long‐lived states RLLS which are known to be less sensitive to paramagnetically induced relaxation. Also, the extent of correlation of random fields at two proton sites is studied and is found to be strongly correlated with each other. The obtained correlation constant is found to be independent of the nature of added paramagnetic impurities.  相似文献   

6.
Dramatically shortened transverse relaxation times in transverse relaxation optimized spectroscopy (TROSY) result from interference between dipole–dipole interactions and the anisotropy of the chemical shift. Thus NMR spectroscopy becomes a suitable method for studying large biomolecules, with optimal performance when 1-GHz spectrometers become available. By using new phase cycles and data-processing methods, the sensitivity of the TROSY experiment was increased by a factor of √2, which is of considerable importance for applications in high-field NMR studies on large proteins.  相似文献   

7.
Gadolinium is a paramagnetic relaxation enhancement (PRE) agent that accelerates the relaxation of metabolite nuclei. In this study, we noted the ability of gadolinium to improve the sensitivity of two-dimensional, non-uniform sampled NMR spectral data collected from metabolomics samples. In time-equivalent experiments, the addition of gadolinium increased the mean signal intensity measurement and the signal-to-noise ratio for metabolite resonances in both standard and plasma samples. Gadolinium led to highly linear intensity measurements that correlated with metabolite concentrations. In the presence of gadolinium, we were able to detect a broad array of metabolites with a lower limit of detection and quantification in the low micromolar range. We also observed an increase in the repeatability of intensity measurements upon the addition of gadolinium. The results of this study suggest that the addition of a gadolinium-based PRE agent to metabolite samples can improve NMR-based metabolomics.  相似文献   

8.
Paramagnetic metal ions can be inserted into ATP-fueled motor proteins by exchanging the diamagnetic Mg2+ cofactor with Mn2+ or Co2+. Then, paramagnetic relaxation enhancement (PRE) or pseudo-contact shifts (PCSs) can be measured to report on the localization of the metal ion within the protein. We determine the metal position in the oligomeric bacterial DnaB helicase from Helicobacter pylori complexed with the transition-state ATP-analogue ADP:AlF4 and single-stranded DNA using solid-state NMR and a structure-calculation protocol employing CYANA. We discuss and compare the use of Mn2+ and Co2+ in localizing the ATP cofactor in large oligomeric protein assemblies. 31P PCSs induced in the Co2+-containing sample are then used to localize the DNA phosphate groups on the Co2+ PCS tensor surface enabling structural insights into DNA binding to the DnaB helicase.  相似文献   

9.
Abstract

The Proton magnetic Resonance (PMR) spin-lattice and spin-spin relaxation times (T 1 and T 2) were measured in highly viscous (glycerine - water) and less viscous (dioxan-water) systems at different temperatures. The values of relaxation times increase with increasing the temperature. This result is interpreted as due to the combined effect of viscosity and temperature in these solutions. The relaxation times were also measured in these solutions containing paramagnetic ions(PMI). The results indicate that the possibility of an anti-parallel bonding of the paramagnetic ions is higher in highly viscous solutions as compared to low viscous systems and the association in the above mixtures appears to be weak.  相似文献   

10.
蛋白质组装体广泛存在于生物体内,具有相关生物学功能或与人类的重要疾病密切相关。蛋白质组装体分子量大,通常难以溶解和结晶,限制了常用的结构研究手段如X射线晶体学和液体NMR等在其高分辨三维结构解析中的应用。固体核磁共振技术(ssNMR)在难溶、非结晶样品的三维结构解析中具有独特的优势,尤其随着固体NMR硬件包括高场磁体和高性能的探头、固体NMR多维脉冲实验技术和样品制备技术特别是同位素标记技术的快速发展,固体NMR已经成为了蛋白组装体三维结构解析的重要手段。在样品制备方法方面,强调了样品制备条件的优化对得到构象均一样品的重要性,以及丰富的同位素标记方法的使用对固体NMR谱图分辨率提高的重要作用。同时多种脉冲序列如质子驱动自旋扩散技术(PDSD),偶极辅助旋转共振技术(DARR),质子辅助重偶技术(PAR)或转移回波双共振技术(TEDOR)等的建立和发展为结构约束条件收集提供了基本的技术方法。此外,固体NMR与其它实验技术如扫描透射电镜(STEM),冷冻电镜(Cryo-EM)等和理论模拟方法的联用能显著地提高固体NMR的能力,从而能解析分子量更大、结构更复杂的蛋白质组装体的三维结构。本文以Aβ纤维和T3SS针状体的三维结构解析为例介绍固体NMR在蛋白质组装体结构研究的最新实验方法,重点介绍最新的距离约束条件获取的实验方法进展,以及固体NMR与其它实验和理论模拟研究手段的联用在蛋白质组装体结构解析上的最新进展,期望有助于读者对固体NMR技术在蛋白质组装体的三维结构解析方面的研究进展有所了解。  相似文献   

11.
12.
KRAS homo-dimerization has been implicated in the activation of RAF kinases, however, the mechanism and structural basis remain elusive. We developed a system to study KRAS dimerization on nanodiscs using paramagnetic relaxation enhancement (PRE) NMR spectroscopy, and determined distinct structures of membrane-anchored KRAS dimers in the active GTP- and inactive GDP-loaded states. Both dimerize through an α4–α5 interface, but the relative orientation of the protomers and their contacts differ substantially. Dimerization of KRAS-GTP, stabilized by electrostatic interactions between R135 and E168, favors an orientation on the membrane that promotes accessibility of the effector-binding site. Remarkably, “cross”-dimerization between GTP- and GDP-bound KRAS molecules is unfavorable. These models provide a platform to elucidate the structural basis of RAF activation by RAS and to develop inhibitors that can disrupt the KRAS dimerization. The methodology is applicable to many other farnesylated small GTPases.  相似文献   

13.
Fluorine NMR paramagnetic relaxation enhancement was evaluated as a versatile approach for extracting distance information in selectively F‐labeled proteins. Proof of concept and initial applications are presented for the HIV‐inactivating lectin cyanovirin‐N. Single F atoms were introduced at the 4‐, 5‐, 6‐ or 7 positions of Trp49 and the 4‐position of Phe4, Phe54, and Phe80. The paramagnetic nitroxide spin label was attached to Cys residues that were placed into the protein at positions 50 or 52. 19F‐T2 NMR spectra with different relaxation delays were recorded and the transverse 19F‐PRE rate, 19F‐Γ2, was used to determine the average distance between the F nucleus and the paramagnetic center. Our data show that experimental 19F PRE‐based distances correspond to 0.93 of the 1HN‐PRE distances, in perfect agreement with the gyromagnetic γ19F/γ1H ratio, thereby demonstrating that 19F PREs are excellent alternative parameters for quantitative distance measurements in selectively F‐labeled proteins.  相似文献   

14.
15.
16.
17.
Serviceable NMR spectra can, with a few exceptions[1,6], be recorded for paramagnetic complexes in solution. These spectra provide information about the structure of the complexes and the distribution of the unpaired electrons, and hence also about reactive centers in the molecule. The elucidation of intermolecular and intramolecular exchange phenomena, e.g. the determination of ligand exchange rate constants, the determination of rotation barriers, and the detection of contact complexes in solution, or even of occupation equilibria of the electrons, is possible in this way. It can be seen, therefore, that NMR studies on paramagnetic complexes can be a rich source of information.  相似文献   

18.
Solid-state (SS) NMR spectroscopy is a powerful technique for studying challenging biological systems, but it often suffers from low sensitivity. A longitudinal relaxation optimization scheme to enhance the signal sensitivity of HSQC experiments in SSNMR spectroscopy is reported. Under the proposed scheme, the 1H spins of 1H–X (15N or 13C) are selected for signal acquisition, whereas other vast 1H spins are flipped back to the axis of the static magnetic field to accelerate the spin recovery of the observed 1H spins, resulting in enhanced sensitivity. Three biological systems are used to evaluate this strategy, including a seven-transmembrane protein, an RNA, and a whole-cell sample. For all three samples, the proposed scheme largely shortens the effective 1H longitudinal relaxation time and results in a 1.3–2.5-fold gain in sensitivity. The selected systems are representative of challenging biological systems for observation by means of SSNMR spectroscopy; thus indicating the general applicability of this method, which is particularly important for biological samples with a short lifetime or with limited sample quantities.  相似文献   

19.
根据顺磁物质会引起溶液中质子谱线的位移,位移与磁矩间的关系为μ=aT△νC,其中a为常数,T为热力学温度(K),c为溶液中顺磁物质的浓度,△ν为顺磁物质引起溶液中质子共振线的频率差。采用同轴毛细管的样品管用核磁共振测定顺磁物质的磁矩,并得到一些顺磁物质的磁矩。其测定值与文献值相吻合。  相似文献   

20.
Solid-state NMR (ssNMR) spectroscopy has emerged as the method of choice to analyze the structural dynamics of fibrillar, membrane-bound, and crystalline proteins that are recalcitrant to other structural techniques. Recently, 1H detection under fast magic angle spinning and multiple acquisition ssNMR techniques have propelled the structural analysis of complex biomacromolecules. However, data acquisition and resonance-specific assignments remain a bottleneck for this technique. Here, we present a comprehensive multi-acquisition experiment (PHRONESIS) that simultaneously generates up to ten 3D 1H-detected ssNMR spectra. PHRONESIS utilizes broadband transfer and selective pulses to drive multiple independent polarization pathways. High selectivity excitation and de-excitation of specific resonances were achieved by high-fidelity selective pulses that were designed using a combination of an evolutionary algorithm and artificial intelligence. We demonstrated the power of this approach with microcrystalline U-13C,15N GB1 protein, reaching 100 % of the resonance assignments using one data set of ten 3D experiments. The strategy outlined in this work opens up new avenues for implementing novel 1H-detected multi-acquisition ssNMR experiments to speed up and expand the application to larger biomolecular systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号