首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The heats of formation (HOFs) for a series of monofurazan derivatives were calculated by using density functional theory. It is found that the ? CN or ? N3 group plays a very important role in increasing the HOF values of the furazan derivatives. The detonation velocities and detonation pressures of the furazan derivatives are evaluated at two different levels. The results show that the ? NF2 group is very helpful for enhancing the detonation performance for the furazan derivatives, but the case is quite the contrary for the ? CH3 group. An analysis of the bond dissociation energies and bond orders for the weakest bonds indicate that the substitutions of ? CN group are favorable and enhances the thermal stability of the furazan derivatives, but the ? NO2 groups produce opposite effects. These results provide basic information for the molecular design of novel high‐energy density materials. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

2.
Density functional theory (DFT) was employed to evaluate the heats of formation (HOFs) for hexaazaadamantane (HAA) derivatives with ? CN, ? NC, and ? ONO2 groups, respectively. This was done by designing isodesmic reactions at the B3LYP/6‐31G* level of theory, where the HAA cage skeletons were kept unbroken to produce more accurate results, and all HOFs for the required reference compounds, NH2CN, NH2NC, NH2ONO2, and (CH2NH)3, were derived from the G3 theory calculation based on the atomization energies. The calculation results show that the HOFs of HAA derivatives are mainly affected by the number and the position of substituent groups, all the obtained HOFs are positive, and the ? NC derivatives have the most HOFs among the three types of derivatives with the same number of substituent groups. The detonation velocity (D) and detonation pressure (P) were obtained from the empirical Kamlet–Jacobs equations. All the ? NC and ? CN derivatives of HAA have lower densities (ρ), heats of explosion (Q), D, and P. However, these properties of ? ONO2 derivatives are rather high and vary with the number of ? ONO2 groups. Considering the easiness for synthesis and relative stability, 2,4,6,8‐hexaazaadamantanenitrate is finally recommended as a potential candidate of a high‐energy density compound (HEDC). © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

3.
Density functional calculations at the B3LYP level with 6‐311G** and aug‐cc‐pVDZ basis sets were performed to predict the heats of formation (HOFs) for two pyrazine derivatives and eight pyridine derivatives. In the isodesmic reactions designed for the computation of heats of formation (HOFs), pyrazine and pyridine were chosen as reference compounds. The N‐oxidations for the ring nitrogen of pyrazine and pyridine derivatives decrease the HOF values when N‐oxide oxygen is neighboring with amino groups, but increase when it neighbors with nitro groups. Thermal stability was evaluated via bond dissociation energies (BDE) at the UB3LYP/6‐311G** level. As a whole, the homolysis of C–NO2 bonds is the main step for bond dissociation of the title compounds. The BDE values of title compounds are influenced by intramolecular hydrogen bonds. The hydrogen bond effects associated with the length of the H···O bonds were analyzed by the electron density at the critical points and natural bond orbital.  相似文献   

4.
The C? NO2 bond dissociation energies (BDEs) and the heats of formation (HOFs) of nitromethane and polynitromethanes (dinitromethane, trinitromethane, and tetranitromethane) system in gas phase at 298.15 K were calculated theoretically. Density functional theory (DFT) B3LYP, B3P86, B3PW91, and PBE0 methods in combination with different basis sets were employed. It was found that the C? NO2 bond BDEs can be improved from B3LYP to B3PW91 to B3P86 or PBE0 functional. Levels of theory employing B3P86 and PBE0 functionals were found to be sufficiently reliable without the presence of diffusion functions. As the number of NO2 groups on the same C atom increases, the PBE0 functional performs better than the B3P86 functional. Regarding the calculated HOFs, all four functionals can yield satisfactory results with deviations of <2 kcal mol?1 from experimental ones for CH2(NO2)2 and CH(NO2)3, when the diffusion functions are not augmented. For the C(NO2)4 molecule, the large basis sets augmented with polarization functions and diffusion functions are required to yield a good result. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

5.
The polynitrotetraazaoctahydroanthracenes were optimized to obtain their molecular geometries and electronic structures at density functional theory–B3LYP/6‐31+G(d) level. Detonation velocities (D) and detonation pressures (P) were estimated for this nitramine compounds using Kamlet‐Jacobs equations, based on the theoretical densities (ρ) and heats of formation. It is found that there are good linear relationships between volume, density, detonation velocity, detonation pressure and the number of nitro group. Thermal stability of the compounds was investigated by calculating the bond dissociation energies and energy gap (ΔELUMO–HOMO). The simulation results reveal that molecule H performs similarly to famous explosive RDX. These results provide basic information for molecular design of novel high energetic density compounds. © 2011 Wiley Periodicals, Inc.  相似文献   

6.
利用密度泛函理论M062X/6-31++G(d,p)方法,对27种具有不同取代基(甲基、羟甲基和甲氧基)的木质素三聚体模型化合物的Cα-O和Cβ-O键均裂解离能进行了理论计算,探究了不同位置取代基对醚键解离能的影响规律。结果表明,当R2或R3位氢原子仅有一个被甲氧基取代时,Cβ-O键解离能变化很小;当R2、R3位氢原子均被甲氧基取代时,Cβ-O键解离能明显降低;且R4、R5位甲氧基能强化R2、R3位甲氧基对Cβ-O键解离能的降低程度,而不受R1位取代基的影响。当R4、R5位氢原子相继被甲氧基取代时,Cα-O键解离能逐渐降低,且R2、R3位甲氧基也能强化R4、R5位甲氧基对Cα-O键解离能的降低程度。当R1位氢原子相继被甲基、羟甲基取代时,Cα-O键解离能逐渐升高,然而R2、R3位甲氧基会弱化R1位甲基、羟甲基对Cα-O键解离能的升高程度;R1位甲基不会影响Cβ-O键解离能,羟甲基却能明显提高Cβ-O键解离能。  相似文献   

7.
多硝基金刚烷生成热和稳定性的理论研究   总被引:11,自引:3,他引:11  
王飞  许晓娟  肖鹤鸣  张骥 《化学学报》2003,61(12):1939-1943
在密度泛函理论(DFT)B3LYP/6-31G水平下,通过不破裂金刚烷分子骨架(即 选择金刚作为参考物)的等键反应设计,比较精确地计算了系列多硝基金金刚烷的 生成热。经验性基团加和法和半经验MO法(AM1,PM3,MNDO,MNDO/3)均不适用于 标题生成熟的估算。4种半经验MO方法中,以MP3计算结果略好些。探讨了生成热和 分子结构的关系,发现桥头C上硝基使生成热减小,而偕二硝基使生成热增大。运 用生成热、前沿轨道能级差和C-NO_2键级等计算结果,阐明了标题的相对稳定性, 为新一代高能量密度材料(HEDM)的分子设计提供了基础数据和规律性。  相似文献   

8.
The heats of formation (HOF) have been calculated for all the 21 cubylnitrate compounds using the semiemprical molecular orbital (MO) methods (MINDO/3, MNDO, AM1, and PM3) and for 8 of 21 cubylnitrates containing 1–4 ? ONO2 groups using the density functional theory (DFT) method at the B3LYP/6‐31G* level by means of designed isodesmic reactions. The cubane cage skeletons in cubylnitrate molecules have been kept in setting up isodesmic reactions to produce more accurate and reliable results. It is found that there are good linear relationships between the HOFs of the 8 cubylnitrates calculated using B3LYP/6‐31G* and two semiempirical MO (PM3 and AM1) methods, and the linear correlation coefficients of PM3 and AM1 methods are 0.9901 and 0.9826, respectively. Subsequently, the accurate HOFs at B3LYP/6‐31G* level of other 13 cubylnitrates containing 4–8 ? ONO2 groups are obtained by systematically correcting their PM3‐calculated HOFs. Compared with noncaged nitrates, all the 21 cubylnitrates have high heats of formation implying that they may be very powerful energetic materials and have highly exploitable value. The relationship between the HOFs and the molecular structures of cubylnitrates has been discussed. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem, 2001  相似文献   

9.
The derivatives of DPO (2,5-dipicryl-1,3,4-oxadiazole) are optimized to obtain their molecular geometries and electronic structures at the DFT-B3LYP/6-31G* level. The bond length is focused to primarily predict thermal stability and the pyrolysis mechanism of the title compounds. Detonation properties are evaluated using the modified Kamlet-Jacobs equations based on the calculated densities and heats of formation. It is found that there are good linear relationships between density, detonation velocity, detonation pressure, and the number of azido, nitrate, and nitramine groups. According to the largest exothermic principle, the relative specific impulse is investigated by calculating the enthalpy of combustion (ΔH(comb)) and the total heat capacity (C(p,gases)). It is found that the introduction of -N(3), -ONO(2), and -NNO(2) groups could increase the specific impulses and II-4, II-5, and III-5 are potential candidates for High Energy Density Materials (HEDMs). The effect of the azido, nitrate, and nitramine groups on the structure and the properties is discussed.  相似文献   

10.
Nitro derivatives of benzene and aminobenzenes are optimized at the DFT‐B3LYP/6‐31G* level. The heat of formation (ΔHf) and crystal theoretical density (ρ) are estimated to evaluate the detonation properties using the modified Kamlet–Jacobs equations. Thermal stability and the pyrolysis mechanism of the title compounds are investigated by calculating the bond dissociation energies (BDE) at the unrestricted B3LYP/6‐31G* level. The kinetic parameter and the static electronic structural parameters can be used to predict the stability and the relative magnitude of the impact sensitivity of homologues. According to the quantitative standard of the energy and the stability as an HEDC, the title compounds having more than four nitro groups satisfy this requirement. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

11.
We have calculated the heats of formation (HOFs) for a series of polyazidocubanes by using the density functional theory (DFT), Hartree-Fock, and MP2 methods with 6-31G* basis set as well as semiempirical methods. The cubane skeleton was chosen for a reference compound, that is, the cubane skeleton was not broken in the process of designing isodesmic reactions. There exists group additivity for the HOF with respect to the azido group. The semiempirical AM1 method also produced reliable results for the HOFs of the title compounds, but the semiempirical MINDO3 did not. The relationship between HOFs and molecular structures was discussed. It was found that the HOF increases 330-360 kJ/mol for each additional number of the azido group being added to the cubane skeleton. The distance between azido groups slightly influences the values of HOFs. The interacting energies of neighbor azido groups in polyazidocubanes are in the range of 2.3 approximately 6.6 kJ/mol, which are so small and less related to the substituent numbers. The average interaction energy between nearest neighbor --N3 groups in the most stable conformer of octaazidocubane is 2.29 kJ/mol at the B3LYP/6-31G* level. The relative stability related to the number of azido groups of the title compounds was assessed based on the calculated HOFs, the energy gaps between the frontier orbitals, and the bond orders of the C--N3 and C--C bonds. The predicted detonation velocity of hepta- and octa-derivatives is over 9 km/s, and the detonation pressure of them is ca. 40 GPa or over.  相似文献   

12.
The derivatives of 2,5‐dipicryl‐1,3,4‐oxadiazole (DPO) were optimized to obtain their molecular geometries and electronic structures at the DFT‐B3LYP/6‐31G* level. Their IR spectra were obtained and assigned by vibrational analysis. Compared with the experimental results, all the calculated IR data were found to be reliable. Based on the frequencies scaled by 0.96 and the principle of statistic thermodynamics, the thermodynamic properties were evaluated, which are respectively linearly related with the number of azido, nitrate and nitramine groups as well as the temperature, obviously showing good group additivity.  相似文献   

13.
In the study, the X-H (X=CH2, NH, O) bond dissociation energies (BDE) of para-substituted azulene (Y-C10H8X-H) were predicted theoretically for the first time using Density Functronal Theory (DFT) methods at UB3LYP/6-311 + +g(2df,2p)//UB3LYP/6-31 +g(d) level. It was found that the substituents exerted similar effects on the X-H BDE of azulene as those on benzene, except for 6-substituted 2-methylazulene. Owing to the substituent-dipole interaction, the reaction constants (ρ^+) of 2- and 6-Y-CIoHsX-H (X=NH and O only) varied violently. The origin of the substituent effects on the X-H BDE of azulene was found, by both GE/RE and SIE theory, to be directly associated with variation of the radical effects, although the ground effects also played a modest role in determining the net. substituent effects.  相似文献   

14.
含能材料的密度、爆速、爆压和静电感度的理论研究   总被引:7,自引:0,他引:7  
用密度泛函理论(DFT) B3LYP方法, 在6-31G*基组水平下, 全优化计算了系列硝胺类和硝基芳烃类爆炸物的几何构型, 用Monte-Carlo方法和自编程序, 基于0.001 e•bohr-3等电子密度面所包围的体积空间求得分子平均摩尔体积(V)和理论密度(ρ). 用Kamlet-Jacobs方程基于理论密度(ρ)和PM3计算生成焓(ΔHf)估算标题物的爆速(D)和爆压(p), 发现多环硝胺类化合物的爆轰性能优于芳烃硝基类化合物, 故此, 在寻求高能量密度材料(HEDM)时, 我们应特别关注多环硝胺化合物. 与ρD文献值比较, 表明本理论计算方法和结果是适用可靠的. 将爆速(D)和爆压(p)计算值与静电感度实验值(EES)进行比较和关联, 发现: 若对化合物进行细致分类讨论, 则它们之间存在较好的线性关系. 据此建议, 在含能材料分子设计中, 可通过理论计算爆轰性质(Dp)去预估难以定量求得或尚未合成的含能材料的静电火花感度值(EES). 此外, 我们还讨论了取代基对ρ, Dp的影响, 也有助于分子设计.  相似文献   

15.
16.
Density functional theory (DFT) method has been employed to study the effect of nitroamino group as a substituent in cyclopentane and cyclohexane, which usually construct the polycyclic or caged nitra-mines. Molecular structures were investigated at the B3LYP/6-31G** level, and isodesmic reactions were designed for calculating the group interactions. The results show that the group interactions ac-cord with the group additivity, increasing with the increasing number of nitroamino groups. The dis-tance between substituents influences the interactions. Detonation performances were evaluated by the Kamlet-Jacobs equations based on the predicted densities and heats of formation, while thermal stability and pyrolysis mechanism were studied by the computations of bond dissociation energy (BDE). It is found that the contributions of nitroamino groups to the detonation heat, detonation velocity, detonation pressure, and stability all deviate from the group additivity. Only 3a, 3b, and 9a-9c may be novel potential candidates of high energy density materials (HEDMs) according to the quantitative cri-teria of HEDM (ρ≈ 1.9 g/cm3, D ≈ 9.0 km/s, P ≈ 40.0 GPa). Stability decreases with the increasing number of N-NO2 groups, and homolysis of N-NO2 bond is the initial step in the thermolysis of the title com-pounds. Coupled with the demand of thermal stability (BDE > 20 kcal/mol), only 1,2,4-trinitrotriazacy-clohexane and 1,2,4,5-tetranitrotetraazacyclohexane are suggested as feasible energetic materials. These results may provide basic information for the molecular design of HEDMs.  相似文献   

17.
The reaction mechanism of CH2CH radical with HNCO has been investigated systematically by density functional theory (DFT). The geometries and harmonic frequencies of reactants, intermediates, transition states, and products have been optimized with the B3LYP at different levels. At the same time, AIM is performed to calculate the charge density of some bonding critical points and the charges of some atoms. Nine feasible reaction pathways have been investigated. The results indicated that the main pathway is CH2CH + HNCO → IMA1 → TSA1 → CH2CH2 + NCO, which is characterized by hydrogen atom transferring. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

18.
Theoretical investigations are carried out on the reaction mechanism of the reactions of CF3OCHF2 (HFOC-125) with the OH radials and Cl atoms, as well as the heats of formation of CF3OCHF2 and CF3OCF2. The electronic structure information on the potential energy surface for each reaction is obtained at the B3LYP/6-311G(d,p) level, and energetic information is further refined by G3(MP2) theory. The direct dynamics calculation of the hydrogen abstraction reactions are also performed at the G3(MP2)//B3LYP/ 6-311G(d,p) level. The classical energy profile is corrected by interpolated single-point energies (ISPE) approach, incorporating the small-curvature tunnelling effect (SCT) calculated by the variational transition-state theory (VTST). The rate constants are in good agreement with the experimental data and are found to be k1 = 4.95 x 10(-30)T(5.40)exp(-347/T) and k2 = 1.86 x 10(-23)T(3.43)exp(-1579/T) cm3 molecule(-1)s(-1) over the temperature range 200-2000 K. The rate constants at 298 K for these two reactions are 3.38 x 10(-16) and 2.80 x 10(-17) cm3 molecule(-1)s(-1), respectively. Using group-balanced isodesmic reactions as working chemical reactions, the standard enthalpies of formation for CF3OCHF2 and CF3OCF2 are -312.3 +/- 1.0 and -257.3 +/- 1.0 kcalmol(-1), respectively, evaluated by G3(MP2) theory based on the B3LYP/6-311G(d,p) geometries. The theoretical studies provide rate constants of the title reactions and the enthalpies of the species, which are important parameters in determining the atmospheric lifetime and the feasible pathways for the loss of HFOC-125.  相似文献   

19.
采用密度泛函理论(DFT)方法在B3LYP/6-311G**水平研究了2-硅萘与甲醛和二苯甲酮的[2+2]和[4+2]杂环加成反应的微观机理、势能剖面,考察取代基和苯溶剂对反应势能剖面的影响.计算结果表明,所研究反应均以协同但非同步的方式进行.羰基C原子上的苯取代基不利于反应的进行,而2-硅萘分子中Si原子上的C(CH3)3,CCl3及NH2取代基均有利于反应的进行.苯溶剂对所研究反应的势能剖面影响不大.[2+2]反应比相应的[4+2]反应容易进行,此结果与实验一致.  相似文献   

20.
o‐Quinone amines, which are relevant to various biological processes, can undergo spontaneous intramolecular cyclization (ring closure reaction by amino‐terminated hydrocarbon side chain) that deactivates them toward another possible reactions, that is, thiol binding. Density functional theory‐based calculation is employed for obtaining the potential energy curves along the C? N bond formation in the intramolecular cyclization of various o‐quinone amines, viz., dopaminequinone, dopaquinone, N‐methyl‐dopaminequinone, N‐formyl‐dopaminequinone, and the corresponding methylene‐inserted analogues. The activation barrier is decreased by introduction of α‐carboxylate and N‐methyl group whereas increased by introduction of N‐formyl group. A negative correlation between the activation barriers and the level of highest occupied molecular orbital is pointed out. Furthermore, the methylene‐inserted analogues show decreased activation barriers. This is explained by reduction of steric repulsion in the transition state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号