首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The series of nitro-triaziridines had been studied as high-energy density compounds at B3LYP/6-311G** and MP2/6-311G** levels by means of density functional theory. The heats of formation (HOFs), bond dissociation energies, and detonation performance had been calculated in detail. It was found that all nitro-triaziridines have high position HOFs, and electron-withdrawing of nitro, the steric hindrance, and abundant N–N bond had positive effect with increasing values of HOFs. The thermodynamic stability is estimated by bond dissociation energy and available free space per molecule in unit cell. The detonation performance had been estimated via Kamlet–Jacobs equation and relative specific, However, two different consequences were obtained for detonation performance. Hence, for nitro-triaziridines derivatives, we assumed that a large number of extra oxygen was produced in combustion reaction or explosive reaction, which was negative for the energy released. Therefore, the oxygen balance must be considered for designing high-energy compounds. We also assumed that the Kamlet–Jacobs equation may not be applicable for the compounds, which was constituted of only oxygen, hydrogen, and nitrogen elements.  相似文献   

2.
A series of ethylene oxide derivations, C2OH4?Cn (NO2) n (x?=?1?C4), has been designed computationally. We calculated the heats of formation (HOFs), bond dissociation energy (BDE), and explosive performances (detonation velocity and detonation pressure) of the title compounds by using density functional theory with 6-311G** basis set. The results show that most of ethylene oxide derivations have positive HOFs values except I. All the calculated BDE and the bond dissociation energies without zero-point energy corrections (BDE0) are larger than 200?kJ?mol?1, which indicate that all the ethylene oxide derivations have good thermal stabilities. The explosive performances of most of ethylene oxide derivations would rank up with cyclotrimethylenetrinitramine (RDX). The results have not only shown that these compounds may be used as high energy density compounds, but also provide some useful information for further syntheses.  相似文献   

3.
Density functional theory method was used to study the heats of formation (HOFs), electronic structure, energetic properties, and thermal stability for a series of bridged ditetrazole derivatives with different linkages and substituent groups. The results show that the ? N3 group and azo bridge (? N?N? ) play a very important role in increasing the HOF values of the ditetrazole derivatives. The effects of the substituents on the HOMO–LUMO gap are combined with those of the bridge groups. The calculated detonation velocities and detonation pressures indicate that the ? NO2, ? NF2, ? N?N? , or ? N(O)?N? group is an effective structural unit for enhancing the detonation performance for the derivatives. An analysis of the bond dissociation energies for several relatively weak bonds suggests that the N? N bond in the ring or outside the ring is the weakest one and the N? N cleavage is possible to happen in thermal decomposition. Overall, the ? CH2? CH2? or ? NH? NH? group is an effective bridge for enhancing the thermal stability of the bridged ditetrazoles. Because of their desirable detonation performance and thermal stability, five compounds may be considered as the potential candidates of high‐energy density materials (HEDMs). These results provide basic information for the molecular design of novel HEDMs. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

4.
The heats of formation (HOFs) of heterocyclic nitro compounds were obtained by using a density functional theory B3LYP method with 6‐31G* and 6‐311+G** basis sets. The isodesmic reactions designed for the evaluation of HOFs keep most of the basic ring structures of the title compounds and thus ensure the credibility of the results. The values of HOFs are 567.90, 874.29 and 975.83 kJ/mol at the B3LYP/6‐31G* level for hexanitrohexazaadamantane ( A ), nonanitrononaza‐tetracyclo[7.3.1.13,7.15,11] pentadecane ( B ) and tetranitrotetrazacubane ( C ) respectively. The predicted detonation velocities of the title compounds are larger than, and detonation pressures are much larger than that of the widely used 1,3,5,7‐tetranitro‐1,3,5,7‐tetraazacyclooctane (HMX). The dissociation energy for the weakest C‐N bonds in the cage skeleton of the title compounds are 137‐144 kJ/mol at the B3LYP/6‐31G* level.  相似文献   

5.
Density functional theory (DFT) method has been employed to study the effect of nitroamino group as a substituent in cyclopentane and cyclohexane, which usually construct the polycyclic or caged nitra-mines. Molecular structures were investigated at the B3LYP/6-31G** level, and isodesmic reactions were designed for calculating the group interactions. The results show that the group interactions ac-cord with the group additivity, increasing with the increasing number of nitroamino groups. The dis-tance between substituents influences the interactions. Detonation performances were evaluated by the Kamlet-Jacobs equations based on the predicted densities and heats of formation, while thermal stability and pyrolysis mechanism were studied by the computations of bond dissociation energy (BDE). It is found that the contributions of nitroamino groups to the detonation heat, detonation velocity, detonation pressure, and stability all deviate from the group additivity. Only 3a, 3b, and 9a-9c may be novel potential candidates of high energy density materials (HEDMs) according to the quantitative cri-teria of HEDM (ρ≈ 1.9 g/cm3, D ≈ 9.0 km/s, P ≈ 40.0 GPa). Stability decreases with the increasing number of N-NO2 groups, and homolysis of N-NO2 bond is the initial step in the thermolysis of the title com-pounds. Coupled with the demand of thermal stability (BDE > 20 kcal/mol), only 1,2,4-trinitrotriazacy-clohexane and 1,2,4,5-tetranitrotetraazacyclohexane are suggested as feasible energetic materials. These results may provide basic information for the molecular design of HEDMs.  相似文献   

6.
Density functional calculations at the B3LYP level with 6‐311G** and aug‐cc‐pVDZ basis sets were performed to predict the heats of formation (HOFs) for two pyrazine derivatives and eight pyridine derivatives. In the isodesmic reactions designed for the computation of heats of formation (HOFs), pyrazine and pyridine were chosen as reference compounds. The N‐oxidations for the ring nitrogen of pyrazine and pyridine derivatives decrease the HOF values when N‐oxide oxygen is neighboring with amino groups, but increase when it neighbors with nitro groups. Thermal stability was evaluated via bond dissociation energies (BDE) at the UB3LYP/6‐311G** level. As a whole, the homolysis of C–NO2 bonds is the main step for bond dissociation of the title compounds. The BDE values of title compounds are influenced by intramolecular hydrogen bonds. The hydrogen bond effects associated with the length of the H···O bonds were analyzed by the electron density at the critical points and natural bond orbital.  相似文献   

7.
Density functional theory calculations were performed to find comprehensive relationships between the structures and performance of a series of highly energetic cyclic nitramines. The isodesmic reaction method was employed to estimate the heat of formation. The detonation properties were evaluated by using the Kamlet-Jacobs equations based on the theoretical densities and HOFs. Results indicate the N-NO(2) group and aza N atom are effective substituents for enhancing the detonation performance. All cyclic nitramines except C11 and C21 exhibit better detonation performance than HMX. The decomposition mechanism and thermal stability of these cyclic nitramines were analyzed via the bond dissociation energies. For most of these nitramines, the homolysis of N-NO(2) is the initial step in the thermolysis, and the species with the bridged N-N bond are more sensitive than others. Considering the detonation performance and thermal stability, twelve derivatives may be the promising candidates of high energy density materials (HEDMs). The results of this study may provide basic information for the further study of this kind of compounds and molecular design of novel HEDMs.  相似文献   

8.
《结构化学》2020,39(4):643-650
At the B3 PW91/6-311+G(d,p)//MP2/6-311+G(d,p) level, molecular densities, detonation velocities, and detonation pressures of nitroso substituted derivatives of azetidine with their thermal stabilities were investigated to look for high energy density compounds(HEDCs). It was found that the azetidine derivatives had high heat of formation(HOF) and large bond dissociation energy(BDE). Intramolecular hydrogen bonds were located in three molecules(1, 4, and 5), and the molecular stability were improved markedly as well. For 5 and 6, the detonation performances(D= 9.36 km/s and 10.80 km/s, P= 44.42 GPa and 60.70 GPa, respectively) meet requirements as high energy density compounds. This work may provide basic information for further study of title compounds.  相似文献   

9.
The heats of formation (HOFs) were calculated for a series of polydifluoroaminocubanes by using density functional theory (DFT), Hartree-Fock, and MP2 method with 6-31G basis set as well as semiempirical methods. The cubane skeleton was not broken in the process of designing isodesmic reactions; i.e., the cubane skeleton was chosen for a reference compound. The contribution of difluoroamino group to the heat of formation deviates from group additivity. The semiempirical MO (MNDO, AM1, and PM3) methods did not produce accurate and reliable results for the HOFs of the title compounds. The relationship between HOFs and molecular structures was discussed. It was found that the HOFs decreased dramatically initially and then gradually with each difluoroamino group attached to the cubane skeleton. The distance between difluoroamino groups influences the values of HOFs. The interacting energies of polydifluoroaminocubanes are in the range 14-20 kJ/mol. The interaction of neighbor difluoroamino groups discords with the group additivity. The average interaction energy between the nearest-neighbor NF(2) group in the most stable conformer of octadifluoroaminocubane is 13.94 kJ/mol at the B3LYP/6-31G level. The NF(2) group can rotate freely around the C-N bond. The relative stability of the title compounds was accessed on the basis of the calculated HOFs, the energy gaps between the frontier orbitals, and the bond order of C-NF(2). These results provide basic information for the molecular design of novel high energetic density materials.  相似文献   

10.
The N-NO2 bond dissociation energies (BDEs) for 7 energetic materials were computed by means of accurate density functional theory (B3LYP, B3PW91 and B3P86) with 6-31G** and 6-311G** basis sets. By comparing the computed energies and experimental results, we find that the B3P86/6-311G** method can give good results of BDE, which has the mean absolute deviation of 1.30kcal/mol. In addition, substituent effects were also taken into account. It is noted that the Hammett constants of substituent groups are related to the BDEs of the N-NO2 bond and the bond dissociation energies of the energetic materials studied decrease when increasing the number of NO2 group.  相似文献   

11.
高能量密度材料3,3′-偶氮-1,2,4,5-四嗪衍生物的分子设计   总被引:1,自引:0,他引:1  
运用密度泛函理论(DFT)方法,计算系列3,3′-偶氮-1,2,4,5-四嗪衍生物的生成热.结果显示:—N3取代基在增加3,3′-偶氮-1,2,4,5-四嗪衍生物的生成热方面起了非常重要的作用.通过分析标题化合物的最弱键离解能发现:—NH2或—N3取代基非常有利于增加衍生物的热稳定性.计算的爆速(D)和爆压(p)数值表明:—NO2或—NF2取代基有利于提高3,3′-偶氮-1,2,4,5-四嗪衍生物的爆轰性能.综合爆轰性能和热稳定性的计算结果,3种3,3′-偶氮-1,2,4,5-四嗪衍生物可以作为潜在的品优高能量密度材料(HEDM)候选物.  相似文献   

12.
A theoretical study of the thermal decomposition kinetics of oxetane (1), 2-methyloxetane (2), and 2,2-dimethyloxetane (3) has been carried out at the B3LYP/6-311+G**, B3PW91/6-311+G**, and MPW1PW91/6-311+G** levels of theory. The MPW1PW91/6-311+G** method was found to give a reasonable good agreement with the experimental kinetics and thermodynamic parameters. The decomposition reaction of compounds 1~3 yields formaldehyde and the corresponding substituted olefin. Based on the optimized ground state geometries using MPW1PW91/6-311+G** method, the natural bond orbital (NBO) analysis of donor-acceptor (bond-antibond) interactions revealed that the stabilization energies associated with the electronic delocalization from σC3-C4 bonding to σ*O1-C2 antibonding orbitals decrease from compounds 1 to 3. The σC3-C4→σO1-C2 resonance energies for compounds 1~3 are 2.63, 2.59 and 2.45 kcal mol-1, respectively. Further, the results showed that the energy gaps between σC3-C4 bonding and σ*O1-C2 antibonding orbitals decrease from compounds 1 to 3. Also, the decomposition process in these compounds are controlled by σ→σ* resonance energies. Moreover, the obtained order of energy barriers could be explained by the number of electron-releasing methyl groups substituted to the Csp3 atom (which is attached to oxygen atom). NBO analysis shows that the occupancies of σCsp3-O bonds decrease for compounds 1~3 as 3<2<1, and those of σCsp3-O bonds increase in the opposite order (3 > 2 > 1). This fact illustrates a comparatively easier thermal decomposition of the sCsp3-O bond in compound 3 compared to compound 2, and in compound 2 compared to compound 1. NBO results indicate that these reactions are occurring through a concerted and asynchronous four-membered cyclic transition state type of mechanism.  相似文献   

13.
Density functional theory (DFT) was employed to evaluate the heats of formation (HOFs) for hexaazaadamantane (HAA) derivatives with ? CN, ? NC, and ? ONO2 groups, respectively. This was done by designing isodesmic reactions at the B3LYP/6‐31G* level of theory, where the HAA cage skeletons were kept unbroken to produce more accurate results, and all HOFs for the required reference compounds, NH2CN, NH2NC, NH2ONO2, and (CH2NH)3, were derived from the G3 theory calculation based on the atomization energies. The calculation results show that the HOFs of HAA derivatives are mainly affected by the number and the position of substituent groups, all the obtained HOFs are positive, and the ? NC derivatives have the most HOFs among the three types of derivatives with the same number of substituent groups. The detonation velocity (D) and detonation pressure (P) were obtained from the empirical Kamlet–Jacobs equations. All the ? NC and ? CN derivatives of HAA have lower densities (ρ), heats of explosion (Q), D, and P. However, these properties of ? ONO2 derivatives are rather high and vary with the number of ? ONO2 groups. Considering the easiness for synthesis and relative stability, 2,4,6,8‐hexaazaadamantanenitrate is finally recommended as a potential candidate of a high‐energy density compound (HEDC). © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

14.
The ? NH2, ? NO2, ? N3, ? NHNO2, and ? ONO2 substitution derivatives of PYX (2,6‐bis(picrylamino)‐3,5‐dinitropyridine) were studied at the B3LYP/6‐31G** level of density functional theory. The sublimation enthalpies and heats of formation (HOFs) in gas phase and solid state of these compounds were calculated. The theoretical predicted density (ρ), detonation pressure (P), and detonation velocity (D) showed that these derivatives have better detonation performance than PYX. The effects of substituent groups on HOF, ρ, P, and D were discussed. The order of contribution of various groups to P and D was ? ONO2 > ? NO2 > ? NHNO2 > ? N3 > ? NH2. Sensitivity was evaluated using the frontier orbital energies, bond orders, bond dissociation enthalpies (BDEs), and characteristic heights (h50). The trigger bonds in the pyrolysis process for these PYX derivatives may be Ring‐NO2, NH? NO2, or O? NO2 varying with the substituents. The h50 of most compounds are larger than that of CL‐20, and those of ? NH2, ? NO2, and most ? ONO2 derivatives are larger than that of RDX. The BDEs of the trigger bonds of all but the ? ONO2 derivatives are sufficiently large. Taking both detonation performance and sensitivity into consideration, some derivatives of PYX may be good candidates of explosives. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
We have calculated the heats of formation (HOFs) for a series of polyazidocubanes by using the density functional theory (DFT), Hartree-Fock, and MP2 methods with 6-31G* basis set as well as semiempirical methods. The cubane skeleton was chosen for a reference compound, that is, the cubane skeleton was not broken in the process of designing isodesmic reactions. There exists group additivity for the HOF with respect to the azido group. The semiempirical AM1 method also produced reliable results for the HOFs of the title compounds, but the semiempirical MINDO3 did not. The relationship between HOFs and molecular structures was discussed. It was found that the HOF increases 330-360 kJ/mol for each additional number of the azido group being added to the cubane skeleton. The distance between azido groups slightly influences the values of HOFs. The interacting energies of neighbor azido groups in polyazidocubanes are in the range of 2.3 approximately 6.6 kJ/mol, which are so small and less related to the substituent numbers. The average interaction energy between nearest neighbor --N3 groups in the most stable conformer of octaazidocubane is 2.29 kJ/mol at the B3LYP/6-31G* level. The relative stability related to the number of azido groups of the title compounds was assessed based on the calculated HOFs, the energy gaps between the frontier orbitals, and the bond orders of the C--N3 and C--C bonds. The predicted detonation velocity of hepta- and octa-derivatives is over 9 km/s, and the detonation pressure of them is ca. 40 GPa or over.  相似文献   

16.
采用密度泛函B3LYP/6-311G**方法研究了2-硅萘作为亲二烯体与2,3-二甲基丁二烯的杂Diels-Alder反应的微观机理、势能剖面、取代基效应及溶剂效应,并与硅苯参与的类似反应进行了比较.计算结果表明,所研究反应均以协同非同步的方式进行,且C-Si键总是先于C-C键形成.发生在C1-Si2位上的反应中两个新...  相似文献   

17.
Polynitrohexaazaadamantanes (PNHAAs) have been the subject of much recent research because of their potential as high energy density materials (HEDMs). The B3LYP/6-31G method was employed to evaluate the heats of formation (HOFs) for PNHAAs by designing isodesmic reactions. The HOFs are found to be correlative with the number (n) and the space orientations of nitro groups. Detonation velocities (D) and detonation pressures (P) were estimated for PNHAAs by using the well-known Kamlet-Jacobs equations, based on the theoretical densities (rho) and HOFs. It is found that D and P increase as n ranges from 1 to 6, and PNHAAs with 4-6 nitro groups meet the criteria of an HEDM. When n is over 6, rho of PNHAAs slightly increases; however, the chemical energy of detonation (Q) decreases so greatly that both D and P decrease. The calculations on bond dissociation energies suggest that the N-N bond be the trigger bond during the pyrolysis initiation process of each PNHAA, and with increasing n, N-N bond dissociation energy (E(N-N)) decreases on the whole, that is to say, the relative stability of PNHAAs decreases. All E(N-N)(s) of PNHAAs are more than 30 kcal.mol(-1), which further proves that four PNHAAs with 4-6 nitro groups can be used as the candidates of HEDMs. Considering the synthesis difficulty and the performance as an energetic compound, we finally recommended 2,4,6,8,10-pentanitrohexaazaadamantane as the target HEDM for PNHAAs.  相似文献   

18.
Density functional theory method was used to study the heats of formation (HOFs), electronic structure, energetic properties, and pyrolysis mechanism of a series of trinitromethyl-substituted heterocycle (including triazole, tetrazole, furazan, tetrazine, and fused heterocycles) derivatives. It is found that the fused ring, tetrazine, and tetrazole are effective structural units for increasing the HOFs of the derivatives. The substitution of the combination of nitro and trinitromethyl is very useful for improving their HOFs. The calculated energetic properties indicate that the combination of the nitro and trinitromethyl is very helpful for improving their detonation properties and oxygen balances (OB). Most of the title compounds have a good OB over zero. The OB of six compounds are very high and over 22. An analysis of the bond dissociation energies for several relatively weak bonds suggests that the N–O bond in the ring is a trigger bond for BIII-1, CI-3, and CI-4, and the ring–NO2 and (NO2)2C–NO2 bond cleavage is likely to happen in thermal decomposition for the remaining compounds. Considering the detonation performance and thermal stability, seven compounds could be regarded as potential candidates for high-energy compounds. Four compounds may be used as the novel high-energy oxidizers.  相似文献   

19.
To look for superior and safe high energy density compounds (HEDCs), 2,2',4,4',6,6'-hexanitroazobenzene (HNAB) and its -NO(2), -NH(2), -CN, -NC, -ONO(2), -N(3), or -NF(2) derivatives were studied at the B3LYP/6-31G* level of density functional theory (DFT). The isodesmic reactions were applied to calculate the heats of formation (HOFs) for these compounds. The theoretical molecular density (ρ), detonation energy (E(d)), detonation pressure (P), and detonation velocity (D), estimated using the Kamlet-Jacobs equations, showed that the detonation properties of these compounds were excellent. The effects of substituent groups on HOF, ρ, E(d), P, and D were studied. The order of contribution of the substituent groups to P and D was -NF(2) > -ONO(2) > -NO(2) > -N(3) > -NH(2). Sensitivity was evaluated using the nitro group charges, frontier orbital energies, and bond dissociation enthalpies (BDEs). The trigger bonds in the pyrolysis process for all these HNAB derivatives may be Ring-NO(2), Ring-N═N, Ring-NF(2), or O-NO(2) varying with the attachment of different substituents. BDEs of trigger bonds except those of -ONO(2) derivatives are relatively large, which means these compounds suffice the stability request of explosives. Taking both detonation properties and sensitivities into consideration, some -NF(2) and -NO(2) derivatives may be potential candidates for HEDCs.  相似文献   

20.
多硝基四面体烷结构和性能的理论研究   总被引:1,自引:0,他引:1  
许晓娟  a 肖鹤鸣b 《化学学报》2008,66(20):2219-2226
在B3LYP/6-31G**水平下, 对四种四面体烷硝基衍生物进行理论研究. 基于全优化构型, 计算其红外光谱(IR)、热力学性质; 通过设计合理等键反应计算其气相生成热(HOF); 运用Kamlet-Jacobs方程估算其爆速(D)和爆压(p); 通过计算和比较各化合物的两种可能引发键(C—C和C—N)离解能(EC—C和EC—N), 确认该系列化合物的热解引发键和热稳定性. 讨论了各性能参数与其结构参数的关系. 兼顾高能量密度化合物(HEDC)的能量性质和稳定性要求, 最终认为该系列化合物不可作为潜在HEDC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号