首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study of laminar natural convection flow over a semi-infinite vertical plate at constant species concentration is examined. The plate is maintained at a given concentration of some chemical species while convection is induced by diffusion into and chemical reaction with the ambient fluid. In the absence of chemical reaction, a similarity transform is possible. When chemical reaction occurs, perturbation expansions about an additional similarity variable dependent on reaction rate must be employed. Two fundamental parameters of the problem are the Schmidt number, Sc, and the reaction order, n. Results are presented for the Schmidt number ranging from 0.01 to 10000 and reaction order up to 5. In the presence of a chemical reaction, the diffusion and velocity domains expand out from the plate. This results in a larger, less distinct convection layer. Received 21 July 1998 and accepted 24 June 1999  相似文献   

2.
The problem of steady, laminar, thermosolutal Marangoni convection flow of an electrically-conducting fluid along a vertical permeable surface in the presence of a magnetic field, heat generation or absorption and a first-order chemical reaction effects is studied numerically. The general governing partial differential equations are converted into a set of self-similar equations using unique similarity transformations. Numerical solution of the similarity equations is performed using an implicit, iterative, tri-diagonal finite-difference method. Comparisons with previously published work is performed and the results are found to be in excellent agreement. Approximate analytical results for the temperature and concentration profiles as well as the local Nusselt and sherwood numbers are obtained for the conditions of small and large Prandtl and Schmidt numbers are obtained and favorably compared with the numerical solutions. The effects of Hartmann number, heat generation or absorption coefficient, the suction or injection parameter, the thermo-solutal surface tension ratio and the chemical reaction coefficient on the velocity, temperature and concentration profiles as well as quantitites related to the wall velocity, boundary-layer mass flow rate and the Nusselt and Sherwood numbers are presented in graphical and tabular form and discussed. It is found that a first-order chemical reaction increases all of the wall velocity, Nusselt and Sherwood numbers while it decreases the mass flow rate in the boundary layer. Also, as the thermo-solutal surface tension ratio is increased, all of the wall velocity, boundary-layer mass flow rate and the Nusselt and Sherwood numbers are predicted to increase. However, the exact opposite behavior is predicted as the magnetic field strength is increased.  相似文献   

3.
Unsteady laminar mixed convection flow (combined free and forced convection flow) along a vertical slender cylinder embedded in a porous medium under the combined buoyancy effect of thermal and species diffusion has been studied. The effect of the permeability of the medium as well as the magnetic field has been included in the analysis. The partial differential equations with three independent variables governing the flow have been solved numerically using a implicit finite difference scheme in combination with the quasilinearization technique. Computations have been carried out for accelerating, decelerating and oscillatory free stream velocity distributions. The effects of the permeability of the medium, buoyancy forces, transverse curvature and magnetic field on skin friction, heat transfer and mass transfer have been studied. It is found that the effect of free stream velocity distribution is more pronounced on the skin friction than on the heat and mass transfer. The permeability and magnetic parameters increase the skin friction, but reduce the heat and mass transfer. The skin friction, heat transfer and mass transfer are enhanced due to the buoyancy forces and curvature parameter. The heat transfer is strongly dependent on the viscous dissipation parameter and the Prandtl number, and the mass transfer on the Schmidt number.  相似文献   

4.
An approximate solution for the steady laminar flow along a semi infinite horizontal plate in the presence of species concentration and chemical reaction has been obtained using Numerical Technique. It has been observed that in the presence of chemical reaction, (i) the velocity and concentration increase with decrease of Schmidt number Sc. (ii) Skin friction and rate of concentration decrease with the increase of chemical reaction parameter. Received on 12 January 1999  相似文献   

5.
A technique of the state space approach and the inversion of the Laplace transform method are applied to dimensionless equations of an unsteady one-dimensional boundary-layer flow due to heat and mass transfer through a porous medium saturated with a viscoelastic fluid bounded by an infinite vertical plate in the presence of a uniform magnetic field is described. Complete analytical solutions for the temperature, concentration, velocity, and induced magnetic and electric fields are presented. The inversion of the Laplace transforms is carried out by using a numerical approach. The proposed method is used to solve two problems: boundary-layer flow in a viscoelastic fluid near a vertical wall subjected to the initial conditions of a stepwise temperature and concentration and viscoelastic fluid flow between two vertical walls. The solutions are found to be dependent on the governing parameters including the Prandtl number, the Schmidt number, the Grashof number, reaction rate coefficient, viscoelastic parameter, and permeability of the porous medium. Effects of these major parameters on the transport behavior are investigated methodically, and typical results are illustrated to reveal the tendency of the solutions. Representative results are presented for the velocity, temperature, concentration, and induced magnetic and electric field distributions, as well as the local skin-friction coefficient and the local Nusselt and Sherwood numbers.  相似文献   

6.
A numerical solution for the transient natural convection flow over a vertical cylinder under the combined buoyancy effect of heat and mass transfer is presented. The velocity, temperature and concentration profiles, local and average skin-friction, Nusselt number and Sherwood number are shown graphically. It is observed that time taken to reach steady state increases with Schmidt number and decreases as combined buoyancy ratio parameter N increases. Stability and convergence of the finite difference scheme are established. Received on 8 July 1997  相似文献   

7.
M. Narahari 《Meccanica》2012,47(8):1961-1976
The unsteady laminar free convection flow between two long vertical parallel plates with ramped wall temperature at one boundary has been investigated in the presence of thermal radiation and chemical species concentration. The exact solutions of the momentum, energy and concentration equations have been obtained using the Laplace transform technique. The velocity and temperature profiles, skin-friction and Nusselt number variations are shown graphically and the numerical values of the volume flow rate, the total heat rate and species rate added to the fluid are presented in a table. The influence of different system parameters such as the radiation parameter (R), buoyancy ratio parameter (N), Schmidt number (Sc) and time (t) has been analyzed carefully. A critical analysis of the coupled heat and mass transfer phenomena is provided. The free convective flow due to ramped wall temperature has also been compared with the baseline case of flow due to constant wall temperature.  相似文献   

8.
Similarity analysis of diffusion of chemically reactive solute distribution in MHD boundary layer flow of an electrically conducting incompressible fluid over a porous flat plate is presented. The reaction rate of the solute is considered inversely proportional along the plate. Adopting the similarity transformation technique the governing equations are converted into the self-similar ordinary differential equations which are solved by shooting procedure using Runge-Kutta method. For increase of the Schmidt number the solute boundary layer thickness is reduced. Most importantly, the effects of reaction rate and order of reaction on concentration field are of conflicting natures, due to increasing reaction rate parameter the concentration decreases, but for the increase in order of reaction it increases. In presence of chemical reaction, the concentration profiles attain negative value when Schmidt number is large.  相似文献   

9.
The magnetohydrodynamic (MHD) flow and mass transfer of an electrically conducting upper convected Maxwell (UCM) fluid at a porous surface are studied in the presence of a chemically reactive species. The governing nonlinear partial differential equations along with the appropriate boundary conditions are transformed into nonlinear ordinary differential equations and numerically solved by the Keller-box method. The effects of various physical parameters on the flow and mass transfer characteristics are graphically presented and discussed. It is observed that the order of the chemical reaction is to increase the thickness of the diffusion boundary layer. Also, the mass transfer rate strongly depends on the Schmidt number and the reaction rate parameter. Furthermore, available results in the literature are obtained as a special case.  相似文献   

10.
The verified Darcy–Brinkman model and boundary perturbation method are used to study the Brinkman flow in a tube with a bumpy surface, assuming the amplitude of the bumps is small compared to the mean tube radius. This study is important to understand the abnormal flow conditions caused by the boundary irregularities in diseased vessels. The mean rate flow is found, up to second-order correction, as a function of circumferential and longitudinal wave numbers and the permeability parameter of the porous medium. Numerical results displaying the velocity components and bumpiness functions are obtained for various values of the physical parameters of the problem. The results are tabulated and represented graphically for various physical parameters. It is found that, for every permeability parameter and for given bump area, there exists a circumferential wave number, for which the flow resistance is minimized. The limiting cases of Stokes and Darcy’s flows of the bumpiness function are discussed and compared with the available results in the literature.  相似文献   

11.
Time-dependent, two-dimensional(2 D) magnetohydrodynamic(MHD)micropolar nanomaterial flow over a shrinking/stretching surface near the stagnant point is considered. Mass and heat transfer characteristics are incorporated in the problem. A model of the partial differential expressions is altered into the forms of the ordinary differential equations via similarity transformations. The obtained equations are numerically solved by a shooting scheme in the MAPLE software. Dual solutions are observed at different values of the specified physical parameters. The stability of first and second solutions is examined through the stability analysis process. This analysis interprets that the first solution is stabilized and physically feasible while the second one is un-stable and not feasible. Furthermore, the natures of various physical factors on the drag force, skin-friction factor, and rate of mass and heat transfer are determined and interpreted. The micropolar nanofluid velocity declines with a rise in the suction and magnetic parameters, whereas it increases by increasing the unsteadiness parameter.The temperature of the micropolar nanofluid rises with increase in the Brownian motion,radiation, thermophoresis, unsteady and magnetic parameters, but it decreases against an increment in the thermal slip constraint and Prandtl number. The concentration of nanoparticles reduces against the augmented Schmidt number and Brownian movement values but rises for incremented thermophoresis parameter values.  相似文献   

12.
A boundary layer analysis is presented to investigate numerically the effects of radiation,thermophoresis and the dimensionless heat generation or absorption on hydromagnetic flow with heat and mass transfer over a flat surface in a porous medium.The boundary layer equations are transformed to non-linear ordinary differential equations using scaling group of transformations and they are solved numerically by using the fourth order Runge-Kutta method with shooting technique for some values of physical parameters.Comparisons with previously published work are performed and the results are found to be in very good agreement.Many results are obtained and a representative set is displayed graphically to illustrate the influence of the various parameters on the dimensionless velocity,temperature and concentration profiles as well as the local skin-friction coefficient,wall heat transfer,particle deposition rate and wall thermophoretic deposition velocity.The results show that the magnetic field induces acceleration of the flow,rather than deceleration(as in classical magnetohydrodynamics(MHD) boundary layer flow) but to reduce temperature and increase concentration of particles in boundary layer.Also,there is a strong dependency of the concentration in the boundary layer on both the Schmidt number and mass transfer parameter.  相似文献   

13.
The influence of third grade, partial slip and other thermophysical parameters on the steady flow, heat and mass transfer of viscoelastic third grade fluid past an infinite vertical insulated plate subject to suction across the boundary layer has been investigated. The space occupying the fluid is porous. The momentum equation is characterized by a highly nonlinear boundary value problem in which the order of the differential equation exceeds the number of available boundary conditions. An efficient numerical scheme of midpoint technique with Richardson’s extrapolation is employed to solve the governing system of coupled nonlinear equations of momentum, energy and concentration. Numerical calculations were carried out for different values of various interesting non-dimensional quantities in the slip flow regime with heat and mass transfer and were shown with the aid of figures. The values of the wall shear stress, the local rate of heat and mass transfers were obtained and tabulated. The analysis shows that as the fluid becomes more shear thickening, the momentum boundary layer decreases but the thermal boundary layer increases; the magnetic field strength is found to decrease with an increasing temperature distribution when the porous plate is insulated. The consequences of increasing the permeability parameter and Schmidt number decrease both the momentum and concentration boundary layer thicknesses respectively whereas an increase in the thermal Grashof number gives rise to the thermal boundary layer thickness.  相似文献   

14.
The mixed convection flow over a continuous moving vertical slender cylinder under the combined buoyancy effect of thermal and mass diffusion has been studied. Both uniform wall temperature (concentration) and uniform heat (mass) flux cases are included in the analysis. The problem is formulated in such a manner that when the ratio λ(= u w/(u w + u ), where u w and u are the wall and free stream velocities, is zero, the problem reduces to the flow over a stationary cylinder, and when λ = 1 it reduces to the flow over a moving cylinder in an ambient fluid. The partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme. We have also obtained the solution using a perturbation technique with Shanks transformation. This transformation has been used to increase the range of the validity of the solution. For some particular cases closed form solutions are obtained. The surface skin friction, heat transfer and mass transfer increase with the buoyancy forces. The buoyancy forces cause considerable overshoot in the velocity profiles. The Prandtl number and the Schmidt number strongly affect the surface heat transfer and the mass transfer, respectively. The surface skin friction decreases as the relative velocity between the surface and free stream decreases. Received on 17 May 1999  相似文献   

15.
A numerical study of pulsatile flow and mass transfer of an electrically conducting Newtonian biofluid via a channel containing porous medium is considered. The conservation equations are transformed and solved under boundary conditions prescribed at both walls of the channel, using a finite element method with two-noded line elements. The influence of magnetic field on the flow is studied using the dimensionless hydromagnetic number, Nm, which defines the ratio of magnetic (Lorentz) retarding force to the viscous hydrodynamic force. A Darcian linear impedance for low Reynolds numbers is incorporated in the transformed momentum equation and a second order drag force term for inertial (Forchheimer) effects. Velocity and concentration profiles across the channel width are plotted for various values of the Reynolds number (Re), Darcy parameter (λ), Forchheimer parameter (Nf), hydro-magnetic number (Nm), Schmidt number (Sc) and also with dimensionless time (T). Profiles of velocity varying in space and time are also provided. The conduit considered is rigid with a pulsatile pressure applied via an appropriate pressure gradient term. Increasing the hydromagnetic number (Nm) from 1 to 15 considerably depresses biofluid velocity (U) indicating that a magnetic field can be used as a flow control mechanism in, for example, medical applications. A rise in Nf from 1 to 20 strongly retards the flow development and decreases the velocity, U, across the width of the channel. The effects of other parameters on the flowfield are also discussed at length. The flow model also has applications in the analysis of electrically conducting haemotological fluids flowing through filtration media, diffusion of drug species in pharmaceutical hydromechanics, and also in general fluid dynamics of pulsatile systems.  相似文献   

16.
A general analysis has been developed to study the combined effect of the free convective heat and mass transfer on the steady three-dimensional laminar boundary layer flow over a stretching surface. The flow is subject to a transverse magnetic field normal to the plate. The governing three-dimensional partial differential equations for the present case are transformed into ordinary differential equation using three-dimensional similarity variables. The resulting equations, are solved numerically by applying a fifth order Runge-Kutta-Fehlberg scheme with the shooting technique. The effects of the Magnetic field Parameter M, buoyancy parameter N, Prandtl number Pr and Schmidt number Sc are examined on the velocity, temperature and concentration distributions. Numerical data for the skin-friction coefficients, Nusselt and Sherwood numbers have been tabulated for various parametric conditions. The results are compared with known from the literature.  相似文献   

17.
An analysis is performed to present a new self-similar solution of unsteady mixed convection boundary layer flow in the forward stagnation point region of a rotating sphere where the free stream velocity and the angular velocity of the rotating sphere vary continuously with time. It is shown that a self-similar solution is possible when the free stream velocity varies inversely with time. Both constant wall temperature and constant heat flux conditions have been considered in the present study. The system of ordinary differential equations governing the flow have been solved numerically using an implicit finite difference scheme in combination with a quasilinearization technique. It is observed that the surface shear stresses and the surface heat transfer parameters increase with the acceleration and rotation parameters. For a certain value of the acceleration parameter, the surface shear stress in x-direction vanishes and due to further reduction in the value of the acceleration parameter, reverse flow occurs in the x–component of the velocity profiles. The effect of buoyancy parameter is to increase the surface heat transfer rate for buoyancy assisting flow and to decrease it for buoyancy opposing flow. For a fixed buoyancy force, heating by constant heat flux yields a higher value of surface heat transfer rate than heating by constant wall temperature.  相似文献   

18.
The wavelet approach is introduced to study the influence of the natural convection stagnation point flow of the Williamson fluid in the presence of thermophysical and Brownian motion effects. The thermal radiation effects are considered along a permeable stretching surface. The nonlinear problem is simulated numerically by using a novel algorithm based upon the Chebyshev wavelets. It is noticed that the velocity of the Williamson fluid increases for assisting flow cases while decreases for opposing flow cases when the unsteadiness and suction parameters increase, and the magnetic effect on the velocity increases for opposing flow cases while decreases for assisting flow cases. When the thermal radiation parameter, the Dufour number, and Williamson's fluid parameter increase, the temperature increases for both assisting and opposing flow cases. Meanwhile, the temperature decreases when the Prandtl number increases. The concentration decreases when the Soret parameter increases, while increases when the Schmidt number increases. It is perceived that the assisting force decreases more than the opposing force.The findings endorse the credibility of the proposed algorithm, and could be extended to other nonlinear problems with complex nature.  相似文献   

19.
The steady laminar thermosolutal Marangoni convection in the presence of temperature-dependent volumetric heat sources/sinks as well as of a first-order chemical reaction is considered in this paper. Assuming that the surface tension varies linearly with temperature and concentration and that the interface temperature and concentration are quadratic functions of the interface arc length x, exact analytical similarity solutions are obtained for the velocity, temperature and concentration fields. The features of these exact solutions as functions of the physical parameters of the problem are discussed in detail.  相似文献   

20.
The boundary layer problem of a power-law fluid flow with fluid injection on a wedge whose surface is moving with a constant velocity in the opposite direction to that of the uniform mainstream is analyzed. The free stream velocity, the injection velocity at the surface, moving velocity of the wedge surface, the wedge angle and the power law index of non-Newtonian fluid are assumed variables. The fourth order Runge–Kutta method modified by Gill is used to solve the non-dimensional boundary layer equations for non-Newtonian flow field. Without fluid injection, for every angle of wedge β, a limiting value for velocity ratio λ cr (velocity of the wedge surface/velocity of the uniform flow) is found for each power-law index n. The value of λ cr increases with the increasing wedge angle β. The value of wedge angle also restricts the physical characteristics of the fluid to be used. The effects of the different parameters on velocity profile and on skin friction are studied and the drag reduction is discussed. In case of C = 2.5 and velocity ratio λ = 0.2 for wedge angle β = 0.5 with the fluid with power law-index n = 0.5, 48.8% drag reduction is obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号