首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

We consider the propagation of an atomic beam in a quadrupole magnetic field under transverse irradiation by a cooling laser field. The cooling laser field was chosen in the form of a two-dimensional σ+? configuration. We show that the sub-Doppler resonance in the radiation force can be used to reduce the diameter of the atomic beam to a value on the order of 10 mm. We establish that the simultaneous transverse cooling and compression of the atomic beam allow its phase density to be increased to values of the order of 10?4–10?3. The dipole interaction of an atom with the cooling and compressing laser field in a quadrupole magnetic field is analyzed in terms of a simple (3 + 5)-level model atom.

  相似文献   

2.
The amplification (attenuation) factor of an electromagnetic wave during the scattering of a relativistic electron by a nucleus in a moderately strong field of a circularly polarized electromagnetic wave is studied theoretically. The effect of amplification of an electromagnetic field is discovered in a certain interval of polar angles of the incident electron; this interval of angles essentially depends on the electron energy and the field intensity. It is shown that the amplification of a field attains its maximum for nonrelativistic electrons in the range of medium fields. As the electron energy increases, the amplification decreases and vanishes for ultrarelativistic electrons. An increase in the field intensity for a given electron energy also leads to a slow decrease in the amplification of a field. At high intensities of the wave, the effect of amplification vanishes. It is shown that, in the range of optical frequencies for medium fields (F ~ 106V/cm), the amplification factor of laser light may amount to about μ ~ 10?1 cm?1 for sufficiently high-power electron beams.  相似文献   

3.
With Hg199 atoms confined in an optical lattice trap in the Lamb-Dicke regime, we obtain a spectral line at 265.6 nm for which the FWHM is ?15??Hz. Here we lock an ultrastable laser to this ultranarrow S01?P03 clock transition and achieve a fractional frequency instability of 5.4×10?15/? for ??400??s. The highly stable laser light used for the atom probing is derived from a 1062.6 nm fiber laser locked to an ultrastable optical cavity that exhibits a mean drift rate of ?6.0×10?17??s?1 (?16.9??mHz?s?1 at 282 THz) over a six month period. A comparison between two such lasers locked to independent optical cavities shows a flicker noise limited fractional frequency instability of 4×10?16 per cavity.  相似文献   

4.
The spectral probability densities of the spontaneous emission and the generation of harmonics by a hydrogen atom in the field of intense laser pulse are calculated. A previously proposed approach is used, which is based on the Kramers?Henneberger transformation for the wave function of time-dependent Schrödinger equation and expansion in the unperturbed atomic eigenstates and the photon states. The spectral range up to the tenth harmonic is investigated with the laser pulse duration ranging from 6 to 12 optical cycles and the peak intensity varied from 1 to 10 TWcm?2.  相似文献   

5.
A cascade transfer of light energy to a resonance atom situated near a spherical nanoparticle and then, by a nonradiative mechanism, to the nanoparticle itself is considered. It is established that the efficiency of the cascade transfer essentially depends on the frequency and polarization of light, on the distance between the atom and the particle, on the optical properties of the particle, and on the time conditions of radiation. The rate of light absorption by a metal nanoparticle via cascade energy transfer may be 104–105 times higher than the direct absorption of light by a nanoparticle. For a fixed frequency of light, the cascade transfer of energy is a sharply selective function of the distance between the atom and the particle (the resonance width is about 10?2 of the particle radius). Atomic fluorescence exhibits similar behavior. This feature can form the basis for a new method of optical scanning microscopy and location and localization of atoms near the surface of a particle.  相似文献   

6.
We report study of processes which occur in lithium vapour under two-photon excitation of the Li(3D) state at 639.1 nm. A time-resolved technique has been used to measure the fluorescence from the Li(3D), Li(2P) and Li(3P) states. We have determined radiation rates for lithium atom densities in the range 1013–1014 cm?3 and laser powers (105–106 Wcm?2). The ground-state lithium atom density was determined by knowing temperature and vapour pressure in a modified heat-pipe oven. The contribution to radiation rates from different processes and prospect for cross-section determination of homonuclear reverse energy-pooling are discussed.  相似文献   

7.
The wavelength for heavy atom enhanced phosphorescence is unambiguously established by time resolved excitation spectra in 50% EPA and 50% ethyl iodide at 77 K for protoporphyrin (795 nm), mesoporphyrin (773 nm), octaethylporphin (768 nm), and porphin (785 nm). Excitation spectra also establish the phosphorescence wavelength of brominated protoporphyrin in EPA at 77 K to be 783 nm, with a quantum yield φp ~ 9 × 10?4. Using laser excitation the phosphorescence quantum yields in EPA were found for protoporphyrin (φp ~ 5 × 10?5), mesoporphyrin (φp < 6 × 10?5), and tetraphenylprophin (φp ~ 2 × 10?5). Tetraphenylporphin phosphorescence shows no heavy atom enhancement. Natural radiative lifetimes for phosphorescence of the various free bases are found to be 70 sec and higher.  相似文献   

8.
The Hall effect in heterostructures with a two-dimensional array of tunneling-coupled Ge quantum dots grown by molecular-beam epitaxy on Si is investigated. The conductivity of these structures in zero magnetic field at 4.2 K varies in the range of 10?12?10?4 Ω?1, which includes both the diffusive transport under weak localization conditions and hopping conduction. It is shown that the Hall effect can be discerned against the magnetoresistance-related background in both high- and low-conductivity structures. The Hall coefficient in the hopping regime exhibits a nonmonotonic dependence on the occupancy of quantum dots by holes. This behavior correlates with that of the localization length of the hole wavefunctions.  相似文献   

9.
The features of optical-range electromagnetic wave passage through the photonic crystal filled with metal quantum dots are studied. The possibility of localizing electromagnetic radiation within the photonic crystal with a nonequilibrium temperature increase in a small localization region to 103–106 K under femtosecond excitation by a laser pulse with an energy of 10?3 J was shown.  相似文献   

10.
We present a short review of recent progress in studying QED effects within the interaction of ultra-relativistic laser pulses with vacuum and e ? e + plasma. Current development in laser technologies promises very rapid growth of laser intensities in the near future. Two exawatt class facilities (ELI and XCELS, Russia) in Europe are already in the planning stage. Realization of these projects will make available a laser intensity of ~ 1026?W/cm2 or even higher. Therefore, discussion of nonlinear optical effects in vacuum are becoming compelling for experimentalists and are currently gaining much attention. We show that, in spite of the fact that the expected field strength is still essentially less than E S = m 2 c 3/e? = 1.32 · 1016?V/cm, the nonlinear vacuum effects will be accessible for observation at the ELI and XCELS facilities. The most promissory effect for observation is pair creation by a laser pulse in vacuum. It is shown, that at intensities ~ 5 · 1025?W/cm2, creation even of a single pair is accompanied by the development of an avalanche QED cascade. There exists a distinctive feature of the laser-induced cascades, as compared with the air showers arising due primarily to cosmic rays entering the atmosphere. In our case the laser field plays not only the role of a target (similar to a nucleus in the case of air showers) but is also responsible for the acceleration of slow particles. It is shown that the effect of pair creation imposes a natural limit for the attainable laser intensity and, apparently, the field strength EE S is not accessible for a pair-creating electromagnetic field at all.  相似文献   

11.
The first 52 fs of a time evolution of the electron density in OCS after an interaction with an intense sub 10 fs laser pulse are studied using the time-dependent density functional theory. The nuclear motion in this linear trimer is simulated by the classical molecular dynamics method. Laser fields of intensity 1013 W/cm2 and 1015 W/cm2 are used. Details of the laser induced changes of the structure, as well as the ionization rate are sensitive to the applied field intensity and its polarization. It is found that under suitable conditions the OCS molecule bends soon after an interaction with a laser pulse. A deviation from the linear geometry of up to 23.6° and charged ions of up to +3 are observed. The time evolution of electric dipole moments and the time-dependent electron localization function (ELF) are also studied.  相似文献   

12.
A semi-classical calculation of the three-level system consisting of the ground state, the vibrationally excited state and the electronic excited state under the laser and the Stokes perturbation is given. The induced molecular polarization produces gain modulation of the Stokes and loss modulation of the laser at a frequency that is dependent on the optical intensity. With the optical intensity in self-trapped filaments in nonlinear liquids such as CS2, the period of modulation becomes of the order 10?11 s and a large amplitude modulation of the laser and the Stokes waves will result. The amplitude modulation is not much reduced, if the molecular relaxation time of the order 10?11 s is taken into account. Effects of non-uniform field distribution and the width and shape of the incident laser pulse are discussed. The frequency broadening caused by the three-level effect is shown to be larger than, or at least as large as, the broadening caused by the optical Kerr effect.  相似文献   

13.
We analyze the properties and the character of the evolution of an electron subsystem of a large cluster (with a number of atoms n~104?106) interacting with a short laser pulse of high intensity (1017?1019 W/cm2). As a result of ionization in a strong laser field, cluster atoms are converted into multicharged ions, part of the electrons being formed leaves the cluster, and the other electrons move in a self-consistent field of the charged cluster and the laser wave. It is shown that electron-electron collisions are inessential both during the cluster irradiation by the laser pulse and in the course of cluster expansion; the electron distribution in the cluster therefore does not transform into the Maxwell distribution even during cluster expansion. During cluster expansion, the Coulomb field of a cluster charge acts on cluster ions more strongly than the pressure resulting from electron-ion collisions. In addition, bound electrons remain inside the cluster in the course of its expansion, and cluster expansion therefore does not lead to additional cluster ionization.  相似文献   

14.
In this paper, we report investigations of the electron emission from pure Zn cathodes irradiated by UV laser pulses of 23 ns (full-width at half-maximum) at a wavelength of 248 nm (5 eV). The metal cathodes were tested in a vacuum photodiode chamber at 10?5 Pa. They were irradiated at normal incidence and the anode–cathode distance was set at 3 mm. The maximum applied accelerating voltage was 18 kV, limited by the electrical breakdown of the photodiode gap. Under the above experimental conditions, a maximum applied electric field of 6 MV/m resulted. In the saturation regime, the measured quantum efficiency value increased with the accelerating voltage due to the plasma formation. The highest output current was achieved with 14 mJ laser energy, 18 kV accelerating voltage and its value was 12 A, corresponding to a global quantum efficiency (GQE) approximately of 1×10?4. The temporal quantum efficiency was 1.0×10?4 at the laser pulse onset time and 1.4×10?4 at the pulse tail. We calculated the target temperature at the maximum laser energy. Its value allowed us to obtain output pulses of the same laser temporal profile. Tests performed with a lower laser photon energy (4.02 eV) demonstrated a GQE of two orders of magnitude lower.  相似文献   

15.
16.
The detectability of Raman absorption lines is enhanced by inserting the Raman sample into the cavity of a broad-band dye laser where the sample is simultaneously pumped by monochromatic radiation. With this technique we were able to detect Raman samples with good scattering efficiencies in a concention of 10?3 mole/? or to obtain nearly complete Raman spectra within a time interval of 30 nsec.Exposures in which the dye laser radiation and the strong monochromatic radiation are polarized parallel or perpendicularly to each other are compared with spontaneous Raman spectra which are polarized parallel or perpendicularly.  相似文献   

17.
Laser-induced damage in silicon-on-insulator (SOI) material is investigated with 1064 nm laser pulses. As the laser pulse duration is increased from 190 ps to 1.14 s, the damage threshold of SOI material decreases from 1.3×1010 to 7.7×103 W/cm2 in laser flux. It is found that the damage threshold varies inversely as the pulse duration for a short irradiation time, and is independent of pulse duration for a long irradiation time. The time dependence is in good agreement with a thermal model which well describes the thermal-induced damage in a semi-finite material irradiated by a Gaussian laser beam. The values of absorption coefficient and thermal conductivity under laser irradiation are calculated as 1.1×103 cm?1 and 0.18 Wcm?1 K?1, respectively, by fitting the model to the experimental results. These results on material damage can be used to predict the damage thresholds of SOI-based devices.  相似文献   

18.
ABSTRACT

The reaction of formic acid (HCOOH) with chlorine atom and amidogen radical (NH2) have been investigated using high level theoretical methods such BH&HLYP, MP2, QCISD, and CCSD(T) with the 6–311?+?G(2df,2p), aug-cc-pVTZ, aug-cc-pVQZ and extrapolation to CBS basis sets. The abstraction of the acidic and formyl hydrogen atoms of the acid by the two radicals has been considered, and the different reactions proceed either by a proton coupled electron transfer (pcet) and hydrogen atom transfer (hat) mechanisms. Our calculated rate constant at 298?K for the reaction with Cl is 1.14?×?10?13?cm3?molecule?1?s?1 in good agreement with the experimental value 1.8?±?0.12/2.0?×?10?13?cm3?molecule?1?s?1 and the reaction proceeds exclusively by abstraction of the formyl hydrogen atom, via hat mechanism, producing HOCO+ClH. The calculated rate constant, at 298?K, for the reaction with NH2 is 1.71?×?10?15?cm3?molecule?1?s?1, and the reaction goes through the abstraction of the acidic hydrogen atom, via a pcet mechanism, leading to the formation of HCOO+NH3.  相似文献   

19.
The time and magnetic field dependent magnetization of polarized signals in the presence of chemically induced magnetization transfer is described by means of a kinetic matrix incorporated into the Bloch equations. The approach is transformed into a computer algorithm accounting for all hyperfine lines present in the system. Solutions are readily obtained by numerical methods. Calculations are applied to the time resolved EPR (TR-EPR) spectroscopic signals of p-benzoquinone after laser flash photolysis. In an aqueous alcoholic solution at pH 2.0, chemical exchange via intermolecular proton transfer is found present between neutral semiquinones. At pH 8.3, the TR-EPR spectrum shows only a uniform signal of the semiquinone. At pH 5.4, a superposition of neutral and anionic radicals is observed together with a protonation-deprotonation equilibrium. A two-step hydrogen atom transfer, consisting of electron transfer followed by protonation, is proposed to account for the formation of both neutral and anionic semiquinone species prior to observation. Experiments in partly deuterated solvent mixtures indicate the existence of three semiquinone forms: BQH?, BQ?-, and BQD? prior to observation. The origin of the proton/deuteron transferred to the anion radical in the precursor state is discussed.  相似文献   

20.
In Co-doped TiO2?δ oxide films deposited on SrTiO3(100) substrates, a room-temperature ferromagnetism is found to occur only in a limited charge-carrier concentration interval from 2×1018? 5×1022 cm?3. This indirectly testifies that ferromagnetism in the aforementioned n-type semiconductor is associated with the exchange interaction of magnetic ions via conduction electrons rather than with the formation of Co clusters in the material. The magnetic moment per Co atom is 0.8μB in the TiO cubic phase and 0.5μB in the anatase tetragonal phase of TiO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号