首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We consider the primitive two-colored digraphs whose uncolored digraph has n + s vertices and consists of one n-cycle and one (n − 3)-cycle. We give bounds on the exponents and characterizations of extremal two-colored digraphs.  相似文献   

2.
Exponents of 2-coloring of symmetric digraphs   总被引:1,自引:0,他引:1  
A 2-coloring (G1,G2) of a digraph is 2-primitive if there exist nonnegative integers h and k with h+k>0 such that for each ordered pair (u,v) of vertices there exists an (h,k)-walk in (G1,G2) from u to v. The exponent of (G1,G2) is the minimum value of h+k taken over all such h and k. In this paper, we consider 2-colorings of strongly connected symmetric digraphs with loops, establish necessary and sufficient conditions for these to be 2-primitive and determine an upper bound on their exponents. We also characterize the 2-colored digraphs that attain the upper bound and the exponent set for this family of digraphs on n vertices.  相似文献   

3.
研究了一类双色有向图的本原指数集,它的未着色图中包含3n+1个顶点,一个(2n+3)-圈和一个(n+1)-圈.  相似文献   

4.
Toru Araki   《Discrete Mathematics》2009,309(21):6229-6234
For a digraph G, a k-tuple twin dominating set D of G for some fixed k≥1 is a set of vertices such that every vertex is adjacent to at least k vertices in D, and also every vertex is adjacent from at least k vertices in D. If the subgraph of G induced by D is strongly connected, then D is called a connected k-tuple twin dominating set of G. In this paper, we give constructions of minimal connected k-tuple twin dominating sets for de Bruijn digraphs and Kautz digraphs.  相似文献   

5.
A digraph G = (V, E) is primitive if, for some positive integer k, there is a uv walk of length k for every pair u, v of vertices of V. The minimum such k is called the exponent of G, denoted exp(G). The exponent of a vertex uV, denoted exp(u), is the least integer k such that there is a uv walk of length k for each vV. For a set XV, exp(X) is the least integer k such that for each vV there is a Xv walk of length k, i.e., a uv walk of length k for some uX. Let F(G, k) : = max{exp(X) : |X| = k} and F(n, k) : = max{F(G, k) : |V| = n}, where |X| and |V| denote the number of vertices in X and V, respectively. Recently, B. Liu and Q. Li proved F(n, k) = (nk)(n − 1) + 1 for all 1 ≤ kn − 1. In this article, for each k, 1 ≤ kn − 1, we characterize the digraphs G such that F(G, k) = F(n, k), thereby answering a question of R. Brualdi and B. Liu. We also find some new upper bounds on the (ordinary) exponent of G in terms of the maximum outdegree of G, Δ+(G) = max{d+(u) : uV}, and thus obtain a new refinement of the Wielandt bound (n − 1)2 + 1. © 1998 John Wiley & Sons, Inc. J. Graph Theory 28: 215–225, 1998  相似文献   

6.
By definition, a vertex w of a strongly connected (or, simply, strong) digraph D is noncritical if the subgraph D — w is also strongly connected. We prove that if the minimal out (or in) degree k of D is at least 2, then there are at least k noncritical vertices in D. In contrast to the case of undirected graphs, this bound cannot be sharpened, for a given k, even for digraphs of large order. Moreover, we show that if the valency of any vertex of a strong digraph of order n is at least 3/4n, then it contains at least two noncritical vertices. The proof makes use of the results of the theory of maximal proper strong subgraphs established by Mader and developed by the present author. We also construct a counterpart of this theory for biconnected (undirected) graphs.  相似文献   

7.
We prove that Moore digraphs, and some other classes of extremal digraphs, are weakly distance-regular in the sense that there is an invariance of the number of walks between vertices at a given distance. As weakly distance-regular digraphs, we then compute their complete spectrum from a ‘small’ intersection matrix. This is a very useful tool for deriving some results about their existence and/or their structural properties. For instance, we present here an alternative and unified proof of the existence results on Moore digraphs, Moore bipartite digraphs and, more generally, Moore generalized p-cycles. In addition, we show that the line digraph structure appears as a characteristic property of any Moore generalized p-cycle of diameter D?≥?2p.  相似文献   

8.
J. Gómez 《Discrete Mathematics》2009,309(6):1213-2240
There is special interest in the design of large vertex-symmetric graphs and digraphs as models of interconnection networks for implementing parallelism. In these systems, a large number of nodes are connected with relatively few links and short paths between the nodes, and each node may execute the same communication software without modifications.In this paper, a method for obtaining new general families of large vertex-symmetric digraphs is put forward. To be more precise, from a k-reachable vertex-symmetric digraph and another (k+1)-reachable digraph related to the previous one, and using a new special composition of digraphs, new families of vertex-symmetric digraphs with small diameter are presented. With these families we obtain new vertex-symmetric digraphs that improve various values of the table of the largest known vertex-symmetric (Δ,D)-digraphs. The paper also contains the (Δ,D)-table for vertex-symmetric digraphs, for Δ≤13 and D≤12.  相似文献   

9.
A l-colored digraph D(l) is primitive if there exists a nonnegative integer vector α such that for each ordered pair of vertices x and y (not necessarily distinct), there exists an α-walk in D(l) from x to y. The exponent of the primitive l-colored digraph D(l) is defined to be the minimum value of the sum of all coordinates of α taken over all such α. In this paper, we generalize the concept of exponent of a primitive l-colored digraph by introducing three types of generalized exponents. Further, we study the generalized exponents of primitive two-colored Wielandt digraphs.  相似文献   

10.
一个三色有向图D是本原的,当且仅当存在非负整数h、k和v,且h+k+v0,使得D中的每一对顶点(i,j)都存在从i到j的(h,k,v)-途径,h+k+v的最小值定义为三色有向图D的本原指数.研究了一类三色有向图,它的未着色图中包含2佗-4个顶点,一个n-圈、一个(n-2)-圈和一个2-圈,给出了本原指数上界.  相似文献   

11.
A kernel N of a digraph D is an independent set of vertices of D such that for every wV(D)−N there exists an arc from w to N. If every induced subdigraph of D has a kernel, D is said to be a kernel perfect digraph. D is called a critical kernel imperfect digraph when D has no kernel but every proper induced subdigraph of D has a kernel. If F is a set of arcs of D, a semikernel modulo F of D is an independent set of vertices S of D such that for every zV(D)−S for which there exists an (S,z)-arc of DF, there also exists an (z,S)-arc in D. In this work we show sufficient conditions for an infinite digraph to be a kernel perfect digraph, in terms of semikernel modulo F. As a consequence it is proved that symmetric infinite digraphs and bipartite infinite digraphs are kernel perfect digraphs. Also we give sufficient conditions for the following classes of infinite digraphs to be kernel perfect digraphs: transitive digraphs, quasi-transitive digraphs, right (or left)-pretransitive digraphs, the union of two right (or left)-pretransitive digraphs, the union of a right-pretransitive digraph with a left-pretransitive digraph, the union of two transitive digraphs, locally semicomplete digraphs and outward locally finite digraphs.  相似文献   

12.
THE SECOND EXPONENT SET OF PRIMITIVE DIGRAPHS   总被引:2,自引:0,他引:2  
51.IntroductionandNotationsLetD=(V,E)beadigraphandL(D)denotethesetofcyclelengthsofD.ForuEVandintegeri21,letfo(u):={vEVIthereedestsadirectedwalkoflengthifromutov}.WedelveRo(u):={u}.Letu,vEV.IfN (v)=N (v)andN--(v)=N--(v),thenwecanvacopyofu.LotDbeaprimitivedigraphand7(D)denotetheexponentofD.In1950,H.WielandtI61foundthat7(D)5(n--1)' 1andshowedthatthereisapiquedigraphthatattainsthisbound.In1964,A.L.DulmageandN.S.Mendelsohn[2]ObservedthattherearegapsintheexponentsetEd={ry(D)IDEPD.}…  相似文献   

13.
In this paper we determine the positive integers n and k for which there exists a homogeneous factorisation of a complete digraph on n vertices with k ‘common circulant’ factors. This means a partition of the arc set of the complete digraph Kn into k circulant factor digraphs, such that a cyclic group of order n acts regularly on the vertices of each factor digraph whilst preserving the edges, and in addition, an overgroup of this permutes the factor digraphs transitively amongst themselves. This determination generalises a previous result for self-complementary circulants.  相似文献   

14.
Let D = (V, E) be a primitive digraph. The vertex exponent of D at a vertex v∈ V, denoted by expD(v), is the least integer p such that there is a v →u walk of length p for each u ∈ V. Following Brualdi and Liu, we order the vertices of D so that exPD(V1) ≤ exPD(V2) …≤ exPD(Vn). Then exPD(Vk) is called the k- point exponent of D and is denoted by exPD (k), 1≤ k ≤ n. In this paper we define e(n, k) := max{expD (k) | D ∈ PD(n, 2)} and E(n, k) := {exPD(k)| D ∈ PD(n, 2)}, where PD(n, 2) is the set of all primitive digraphs of order n with girth 2. We completely determine e(n, k) and E(n, k) for all n, k with n ≥ 3 and 1 ≤ k ≤ n.  相似文献   

15.
We consider the so-called Path Partition Conjecture for digraphs which states that for every digraph, D, and every choice of positive integers, λ1,λ2, such that λ1+λ2 equals the order of a longest directed path in D, there exists a partition of D into two digraphs, D1 and D2, such that the order of a longest path in Di is at most λi, for i=1,2.We prove that certain classes of digraphs, which are generalizations of tournaments, satisfy the Path Partition Conjecture and that some of the classes even satisfy the conjecture with equality.  相似文献   

16.
In the context of the degree/diameter problem for directed graphs, it is known that the number of vertices of a strongly connected bipartite digraph satisfies a Moore‐like bound in terms of its diameter k and the maximum out‐degrees (d1, d2) of its partite sets of vertices. It has been proved that, when d1d2 > 1, the digraphs attaining such a bound, called Moore bipartite digraphs, only exist when 2 ≤ k ≤ 4. This paper deals with the problem of their enumeration. In this context, using the theory of circulant matrices and the so‐called De Bruijn near‐factorizations of cyclic groups, we present some new constructions of Moore bipartite digraphs of diameter three and composite out‐degrees. By applying the iterated line digraph technique, such constructions also provide new families of dense bipartite digraphs with arbitrary diameter. Moreover, we show that the line digraph structure is inherent in any Moore bipartite digraph G of diameter k = 4, which means that G = L G′, where G′ is a Moore bipartite digraph of diameter k = 3. © 2003 Wiley Periodicals, Inc. J Graph Theory 43: 171–187, 2003  相似文献   

17.
This paper deals with Hamiltonicity of connected loopless circulant digraphs of outdegree three with connection set of the form {a,ka,c}, where k is an integer. In particular, we prove that if k=−1 or k=2 such a circulant digraph is Hamiltonian if and only if it is not isomorphic to the circulant digraph on 12 vertices with connection set {3,6,4}.  相似文献   

18.
For positive integers k and m, and a digraph D, the k-step m-competition graph of D has the same set of vertices as D and an edge between vertices x and y if and only if there are distinct m vertices v1,v2,…,vm in D such that there are directed walks of length k from x to vi and from y to vi for 1?i?m. In this paper, we present the definition of m-competition index for a primitive digraph. The m-competition index of a primitive digraph D is the smallest positive integer k such that is a complete graph. We study m-competition indices of primitive digraphs and provide an upper bound for the m-competition index of a primitive digraph.  相似文献   

19.
A kernel of a digraph D is an independent and dominating set of vertices of D. A chord of a directed cycle C = (0, 1,…,n, 0) is an arc ij of D not in C with both terminal vertices in C. A diagonal of C is a chord ij with ji − 1. Meyniel made the conjecture (now know to be false) that if D is a diagraph such that every odd directed cycle has at least two chords then D has a kernel. Here we obtain some properties of claw-free M-oriented critical kernel-imperfect digraphs. As a consequence we show that if D is an M-oriented K1,3-free digraph such that every odd directed cycle of length at least five has two diagonals then D has a kernel. © 1996 John Wiley & Sons, Inc.  相似文献   

20.
Let |D| and |D|+n denote the number of vertices of D and the number of vertices of outdegree n in the digraph D, respectively. It is proved that every minimally n‐connected, finite digraph D has |D|+nn + 1 and that for n ≥ 2, there is a cn > 0 such that for all minimally n‐connected, finite digraphs D. Furthermore, case n = 2 of the following conjecture is settled which says that every minimally n‐connected, finite digraph has a vertex of indegree and outdegree equal to n. © 2002 John Wiley & Sons, Inc. J Graph Theory 39: 129–144, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号