首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let M(n, C) be the vector space of n × n complex matrices and let G(r,s,t) be the set of all matrices in M(n, C) having r eigenvalues with positive real parts eigenvalues with negative real part and t eigenvalues with zero real part. In particularG(0,n,0) is the set of stable matrices. We investigate the set of linear operators on M(n, C) that map G(r,s,t) into itself. Such maps include, but are not always limited to similarities, transposition, and multiplication by a positive constant. The proof of our results depends on a characterization of nilpotent matrices in terms of matrices in a particular G(r,s,t), and an extension of a result about the existence of a matrix with prescribed eigenstructure and diagonal entries. Each of these results is of independent interest. Moreover, our char-acterization of nilpotent matrices is sufficiently general to allow us to determine the preservers of many other "inertia classes."  相似文献   

2.
LetM 2n,r denote the vector space of real or complex2n×r matrices with the natural action of the symplectic group Sp 2n , and letG=G n,r =Sp 2n ×M 2n,r denote the corresponding semi-direct product. For any integerp with 0≤pn−1, letH denote the subgroupG p,r ×Sp 2n−2p ofG. We explicitly compute the algebra of left invariant differential operators onG/H, and we show that it is a free algebra if and only ifr2n−2p+1. We also give orthogonal analogues of these results, generalizing those of Gonzalez and Helgason [3]. Partially supported by NSF grant DMS-9101358 This article was processed by the author using the Springer-Verlag TEX mamath macro package 1990.  相似文献   

3.
If G is a graph with p vertices and at least one edge, we set φ (G) = m n max |f(u) ? f(v)|, where the maximum is taken over all edges uv and the minimum over all one-to-one mappings f : V(G) → {1, 2, …, p}: V(G) denotes the set of vertices of G.Pn will denote a path of length n whose vertices are integers 1, 2, …, n with i adjacent to j if and only if |i ? j| = 1. Pm × Pn will denote a graph whose vertices are elements of {1, 2, …, m} × {1, 2, …, n} and in which (i, j), (r, s) are adjacent whenever either i = r and |j ? s| = 1 or j = s and |i ? r| = 1.Theorem.If max(m, n) ? 2, thenφ(Pm × Pn) = min(m, n).  相似文献   

4.
AHowell design of side s andorder 2n, or more briefly, anH(s, 2n), is ans×s array in which each cell either is empty or contains an unordered pair of elements from some 2n-set, sayX, such that (a) each row and each column is Latin (that is, every element ofX is in precisely one cell of each row and each column) and (b) every unordered pair of elements fromX is in at most one cell of the array. Atrivial Howell design is anH(s, 0) havingX=? and consisting of ans×s array of empty cells. A necessary condition onn ands for the existence of a nontrivialH(s, 2n) is that 0<ns≦2n-1. AnH(n+t, 2n) is said to contain a maximum trivial subdesign if somet×t subarray is theH(t, 0). This paper describes a recursive construction for Howell designs containing maximum trivial subdesigns and applies it to settle the existence question forH(n+1, 2n)’s: forn+1 a positive integer, there is anH(n+1, 2n) if and only ifn+1 ∉ {2, 3, 5}.  相似文献   

5.
(3,k)-Factor-Critical Graphs and Toughness   总被引:1,自引:0,他引:1  
 A graph is (r,k)-factor-critical if the removal of any set of k vertices results in a graph with an r-factor (i.e. an r-regular spanning subgraph). Let t(G) denote the toughness of graph G. In this paper, we show that if t(G)≥4, then G is (3,k)-factor-critical for every non-negative integer k such that n+k even, k<2 t(G)−2 and kn−7. Revised: September 21, 1998  相似文献   

6.
Let T be a linear operator on the space of all m×n matrices over any field. we prove that if T maps rank-2 matrices to rank-2 matrices then there exist nonsingular matrices U and V such that either T(X)=UXV for all matrices X, or m=n and T(X)=UXtV for all matrices X where Xt denotes the transpose of X.  相似文献   

7.
Given two graphs G and H, let f(G,H) denote the minimum integer n such that in every coloring of the edges of Kn, there is either a copy of G with all edges having the same color or a copy of H with all edges having different colors. We show that f(G,H) is finite iff G is a star or H is acyclic. If S and T are trees with s and t edges, respectively, we show that 1+s(t?2)/2≤f(S,T)≤(s?1)(t2+3t). Using constructions from design theory, we establish the exact values, lying near (s?1)(t?1), for f(S,T) when S and T are certain paths or star‐like trees. © 2002 Wiley Periodicals, Inc. J Graph Theory 42: 1–16, 2003  相似文献   

8.
The maximum dimension of a space of (k+1)×(k4+s?1) complex matrices of rank k is either s or s+1. Only when s divides k is it possible for the maximum to be s+1. This much is known. In this paper we produce for each k, a multiple of s, an (s+l)-dimensional space of (k+1)×(k+s?1) complex matrices whose non-zero members all have rank k. In the notation introduced by Sylvester l(k,k+1,k+s?1)=s+1 whenever s divides k.  相似文献   

9.
Extending to r > 1 a formula of the authors, we compute the expected reflection distance of a product of t random reflections in the complex reflection group G(r, 1, n). The result relies on an explicit decomposition of the reflection distance function into irreducible G(r, 1, n)-characters and on the eigenvalues of certain adjacency matrices.Received December 8, 2003  相似文献   

10.
We consider the linear matrix equation AX+YB=C where A,B, and C are given matrices of dimensions (r+1)×r, s×(s+1), and (r+1)×(s+1), respectively, and rank A = r, rank B = s. We give a connection between the least-squares solution and the solution which minimizes an arbitrary norm of the residual matrix C?AX? YB.  相似文献   

11.
For integers d≥0, s≥0, a (d, d+s)‐graph is a graph in which the degrees of all the vertices lie in the set {d, d+1, …, d+s}. For an integer r≥0, an (r, r+1)‐factor of a graph G is a spanning (r, r+1)‐subgraph of G. An (r, r+1)‐factorization of a graph G is the expression of G as the edge‐disjoint union of (r, r+1)‐factors. For integers r, s≥0, t≥1, let f(r, s, t) be the smallest integer such that, for each integer df(r, s, t), each simple (d, d+s) ‐graph has an (r, r+1) ‐factorization with x (r, r+1) ‐factors for at least t different values of x. In this note we evaluate f(r, s, t). © 2009 Wiley Periodicals, Inc. J Graph Theory 60: 257‐268, 2009  相似文献   

12.
An identity orientation of a graph G=(V,E) is an orientation of some of the edges of E such that the resulting partially oriented graph has no automorphism other than the identity. We show that the complete bipartite graph Ks,t, with st, does not have an identity orientation if t3s-log3(s-1). We also show that if (r+1)(r+2)2s then Ks,3s-r does have an identity orientation. These results improve the previous bounds obtained by Harary and Jacobson (Discuss. Math. - Graph Theory 21 (2001) 158). We use these results to determine exactly the values of t for which an identity orientation of Ks,t exists for 2s17.  相似文献   

13.
An n×n sign pattern matrix A is an inertially arbitrary pattern (IAP) if each non-negative triple (r s t) with r+s+t=n is the inertia of a matrix with sign pattern A. This paper considers the n×n(n2) skew-symmetric sign pattern Sn with each upper off-diagonal entry positive, the (1,1) entry negative, the (n n) entry positive, and every other diagonal entry zero. We prove that Sn is an IAP.  相似文献   

14.
Let G=(V(G),E(G)) be a simple graph. Given non-negative integers r,s, and t, an [r,s,t]-coloring of G is a mapping c from V(G)∪E(G) to the color set {0,1,…,k?1} such that |c(v i )?c(v j )|≥r for every two adjacent vertices v i ,v j , |c(e i )?c(e j )|≥s for every two adjacent edges e i ,e j , and |c(v i )?c(e j )|≥t for all pairs of incident vertices and edges, respectively. The [r,s,t]-chromatic number χ r,s,t (G) of G is defined to be the minimum k such that G admits an [r,s,t]-coloring. We determine χ r,s,t (K n,n ) in all cases.  相似文献   

15.
16.
If G is a graph on n vertices and r ≥ 2, we let mr(G) denote the minimum number of complete multipartite subgraphs, with r or fewer parts, needed to partition the edge set, E(G). In determining mr(G), we may assume that no two vertices of G have the same neighbor set. For such reducedgraphs G, we prove that mr(G) ≥ log2 (n + r − 1)/r. Furthermore, for each k ≥ 0 and r ≥ 2, there is a unique reduced graph G = G(r, k) with mr(G) = k for which equality holds. We conclude with a short proof of the known eigenvalue bound mr(G) ≥ max{n+ (G, n(G)/(r − 1)}, and show that equality holds if G = G(r, k). © 1996 John Wiley & Sons, Inc.  相似文献   

17.
For a nontrivial connected graph G of order n and a linear ordering s: v 1, v 2, …, v n of vertices of G, define . The traceable number t(G) of a graph G is t(G) = min{d(s)} and the upper traceable number t +(G) of G is t +(G) = max{d(s)}, where the minimum and maximum are taken over all linear orderings s of vertices of G. We study upper traceable numbers of several classes of graphs and the relationship between the traceable number and upper traceable number of a graph. All connected graphs G for which t +(G) − t(G) = 1 are characterized and a formula for the upper traceable number of a tree is established. Research supported by Srinakharinwirot University, the Thailand Research Fund and the Commission on Higher Education, Thailand under the grant number MRG 5080075.  相似文献   

18.
For a graph G, let t(G) denote the maximum number of vertices in an induced subgraph of Gthat is a tree. Further, for a vertex vV(G), let t(G, v) denote the maximum number of vertices in an induced subgraph of Gthat is a tree, with the extra condition that the tree must contain v. The minimum of t(G) (t(G, v), respectively) over all connected triangle‐free graphs G(and vertices vV(G)) on nvertices is denoted by t3(n) (t(n)). Clearly, t(G, v)?t(G) for all vV(G). In this note, we solve the extremal problem of maximizing |G| for given t(G, v), given that Gis connected and triangle‐free. We show that and determine the unique extremal graphs. Thus, we get as corollary that $t_3(n)\ge t_3^{\ast}(n) = \lceil {\frac{1}{2}}(1+{\sqrt{8n-7}})\rceilFor a graph G, let t(G) denote the maximum number of vertices in an induced subgraph of Gthat is a tree. Further, for a vertex vV(G), let t(G, v) denote the maximum number of vertices in an induced subgraph of Gthat is a tree, with the extra condition that the tree must contain v. The minimum of t(G) (t(G, v), respectively) over all connected triangle‐free graphs G(and vertices vV(G)) on nvertices is denoted by t3(n) (t(n)). Clearly, t(G, v)?t(G) for all vV(G). In this note, we solve the extremal problem of maximizing |G| for given t(G, v), given that Gis connected and triangle‐free. We show that and determine the unique extremal graphs. Thus, we get as corollary that $t_3(n)\ge t_3^{\ast}(n) = \lceil {\frac{1}{2}}(1+{\sqrt{8n-7}})\rceil$, improving a recent result by Fox, Loh and Sudakov. © 2009 Wiley Periodicals, Inc. J Graph Theory 64: 206–209, 2010  相似文献   

19.
Let G =  (V, E) be a graph with vertex set V and edge set E. Given non negative integers r, s and t, an [r, s, t]-coloring of a graph G is a proper total coloring where the neighboring elements of G (vertices and edges) receive colors with a certain difference r between colors of adjacent vertices, a difference s between colors of adjacent edges and a difference t between colors of a vertex and an incident edge. Thus [r, s, t]-colorings generalize the classical colorings of graphs and can have applications in different fields like scheduling, channel assignment problem, etc. The [r, s, t]-chromatic number χ r,s,t (G) of G is the minimum k such that G admits an [r, s, t]-coloring. In our paper we propose several bounds for the [r, s, t]-chromatic number of the cartesian and direct products of some graphs.  相似文献   

20.
Given positive integers n and p, and a complex finite dimensional vector space V, we let Sn,p(V) denote the set of all functions from V×V×?×V-(n+p copies) to C that are linear and symmetric in the first n positions, and conjugate linear symmetric in the last p positions. Letting κ=min{n,p} we introduce twisted inner products, [·,·]s,t,1?s,t?κ, on Sn,p(V), and prove the monotonicity condition [F,F]s,t?[F,F]u,v is satisfied when s?u?κ,t?v?κ, and FSn,p(V). Using the monotonicity condition, and the Cauchy-Schwartz inequality, we obtain as corollaries many known inequalities involving norms of symmetric multilinear functions, which in turn imply known inequalities involving permanents of positive semidefinite Hermitian matrices. New tensor and permanental inequalities are also presented. Applications to partial differential equations are indicated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号