首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Given a field 𝕂 of characteristic 2 and an integer n ≥ 2, let W(2n ? 1, 𝕂) be the symplectic polar space defined in PG(2n ? 1, 𝕂) by a non-degenerate alternating form of V(2n, 𝕂) and let Q(2n, 𝕂) be the quadric of PG(2n, 𝕂) associated to a non-singular quadratic form of Witt index n. In the literature it is often claimed that W(2n ? 1, 𝕂) ? Q(2n, 𝕂). This is true when 𝕂 is perfect, but false otherwise. In this article, we modify the previous claim in order to obtain a statement that is correct for any field of characteristic 2. Explicitly, we prove that W(2n ? 1, 𝕂) is indeed isomorphic to a non-singular quadric Q, but when 𝕂 is non-perfect the nucleus of Q has vector dimension greater than 1. So, in this case, Q(2n, 𝕂) is a proper subgeometry of W(2n ? 1, 𝕂). We show that, in spite of this fact, W(2n ? 1, 𝕂) can be embedded in Q(2n, 𝕂) as a subgeometry and that this embedding induces a full embedding of the dual DW(2n ? 1, 𝕂) of W(2n ? 1, 𝕂) into the dual DQ(2n, 𝕂) of Q(2n, 𝕂).  相似文献   

2.
Let 𝕂 be a field, and let R = 𝕂[x 1,…, x n ] be the polynomial ring over 𝕂 in n indeterminates x 1,…, x n . Let G be a graph with vertex-set {x 1,…, x n }, and let J be the cover ideal of G in R. For a given positive integer k, we denote the kth symbolic power and the kth bracket power of J by J (k) and J [k], respectively. In this paper, we give necessary and sufficient conditions for R/J k , R/J (k), and R/J [k] to be Cohen–Macaulay. We also study the limit behavior of the depths of these rings.  相似文献   

3.
In [4] we constructed certain homology representations of a finite group G of type An, Bn or Cn, and showed that these representations can be used to sift out the reflection compound characters of G. In the present note, we show that for a group G of type Dn, each reflection compound character π(k), 2 k n − 2, determines a unique “obstruction” character θ(k), which occurs with positive multiplicity in every homology representation containing π(k).  相似文献   

4.
Let f: V × V → F be a totally arbitrary bilinear form defined on a finite dimensional vector space V over a field F, and let L(f) be the subalgebra of 𝔤𝔩(V) of all skew-adjoint endomorphisms relative to f. Provided F is algebraically closed of characteristic not 2, we determine all f, up to equivalence, such that L(f) is reductive. As a consequence, we find, over an arbitrary field, necessary and sufficient conditions for L(f) to be simple, semisimple or isomorphic to 𝔰𝔩(n) for some n.  相似文献   

5.
Let f: be a continuous, 2π-periodic function and for each n ε let tn(f; ·) denote the trigonometric polynomial of degree n interpolating f in the points 2kπ/(2n + 1) (k = 0, ±1, …, ±n). It was shown by J. Marcinkiewicz that limn → ∞0¦f(θ) − tn(f θ)¦p dθ = 0 for every p > 0. We consider Lagrange interpolation of non-periodic functions by entire functions of exponential type τ > 0 in the points kπ/τ (k = 0, ± 1, ± 2, …) and obtain a result analogous to that of Marcinkiewicz.  相似文献   

6.
Let ??(n, m) denote the class of simple graphs on n vertices and m edges and let G ∈ ?? (n, m). There are many results in graph theory giving conditions under which G contains certain types of subgraphs, such as cycles of given lengths, complete graphs, etc. For example, Turan's theorem gives a sufficient condition for G to contain a Kk + 1 in terms of the number of edges in G. In this paper we prove that, for m = αn2, α > (k - 1)/2k, G contains a Kk + 1, each vertex of which has degree at least f(α)n and determine the best possible f(α). For m = ?n2/4? + 1 we establish that G contains cycles whose vertices have certain minimum degrees. Further, for m = αn2, α > 0 we establish that G contains a subgraph H with δ(H) ≥ f(α, n) and determine the best possible value of f(α, n).  相似文献   

7.
For a given undirected graphG = (V, E, cG) with edges weighted by nonnegative realscG:ER + , let ΛG(k) stand for the minimum amount of weights which needs to be added to makeG k-edge-connected, and letG*(k) be the resulting graph obtained fromG. This paper first shows that function ΛGover the entire rangek [0, +∞] can be computed inO(nm + n2 log n) time, and then shows that allG*(k) in the entire range can be obtained fromO(n log n) weighted cycles, and such cycles can be computed inO(nm + n2 log n) time, wherenandmare the numbers of vertices and edges, respectively.  相似文献   

8.
Let f be an integer valued function defined on the vertex set V(G) of a simple graph G. We call a subset Df of V(G) a f-dominating set of G if |N(x, G) ∩ Df| ≥ f(x) for all xV(G) — Df, where N(x, G) is the set of neighbors of x. Df is a minimum f-dominating set if G has no f-dominating set Df with |Df| < |Df|. If j, k ∈ N0 = {0,1,2,…} with jk, then we define the integer valued function fj,k on V(G) by . By μj,k(G) we denote the cardinality of a minimum fj,k-dominating set of G. A set D ? V(G) is j-dominating if every vertex, which is not in D, is adjacent to at least j vertices of D. The j-domination number γj(G) is the minimum order of a j-dominating set in G. In this paper we shall give estimations of the new domination number μj,k(G), and with the help of these estimations we prove some new and some known upper bounds for the j-domination number. © 1993 John Wiley & Sons, Inc.  相似文献   

9.
We present a new condition on the degree sums of a graph that implies the existence of a long cycle. Let c(G) denote the length of a longest cycle in the graph G and let m be any positive integer. Suppose G is a 2-connected graph with vertices x1,…,xn and edge set E that satisfies the property that, for any two integers j and k with j < k, xjxk ? E, d(xi) ? j and d(xk) ? K - 1, we have (1) d(xi) + d(xk ? m if j + k ? n and (2) if j + k < n, either m ? n or d(xj) + d(xk) ? min(K + 1,m). Then c(G) ? min(m, n). This result unifies previous results of J.C. Bermond and M. Las Vergnas, respectively.  相似文献   

10.
Given graphs H1,…, Hk, let f(H1,…, Hk) be the minimum order of a graph G such that for each i, the induced copies of Hi in G cover V(G). We prove constructively that f(H1, H2) ≤ 2(n(H1) + n(H2) − 2); equality holds when H1 = H 2 = Kn. We prove that f(H1, K n) = n + 2√δ(H1)n + O(1) as n → ∞. We also determine f(K1, m −1, K n) exactly. © 2000 John Wiley & Sons, Inc. J Graph Theory 34: 180–190, 2000  相似文献   

11.
12.
Let φ(G),κ(G),α(G),χ(G),cl(G),diam(G)denote the number of perfect matchings,connectivity,independence number,chromatic number,clique number and diameter of a graph G,respectively.In this note,by constructing some extremal graphs,the following extremal problems are solved:1.max{φ(G):|V(G)|=2n,κ(G)≤k}=k[(2n-3)!!],2.max{φ(G):|V(G)|=2n,α(G)≥k}=[multiply from i=0 to k-1(2n-k-i)[(2n-2k-1)!!],3.max{φ(G):|V(G)|=2n,χ(G)≤k}=φ(T_(k,2n))T_(k,2n)is the Turán graph,that is a complete k-partite graphon 2n vertices in which all parts are as equal in size as possible,4.max{φ(G):|V(G)|=2n,cl(G)=2}=n1,5.max{φ(G):|V(G)|=2n,diam(G)≥2}=(2n-2)(2n-3)[(2n-5)!!],max{φ(G):|V(G)|=2n,diam(G)≥3}=(n-1)~2[(2n-5)!!].  相似文献   

13.
Let k be a fixed integer and fk(n, p) denote the probability that the random graph G(n, p) is k‐colorable. We show that for k≥3, there exists dk(n) such that for any ϵ>0, (1) As a result we conclude that for sufficiently large n the chromatic number of G(n, d/n) is concentrated in one value for all but a small fraction of d>1. ©1999 John Wiley & Sons, Inc. Random Struct. Alg., 14, 63–70, 1999  相似文献   

14.
In this paper, we obtain the following result: Let k, n 1 and n 2 be three positive integers, and let G = (V 1,V 2;E) be a bipartite graph with |V1| = n 1 and |V 2| = n 2 such that n 1 ⩾ 2k + 1, n 2 ⩾ 2k + 1 and |n 1n 2| ⩽ 1. If d(x) + d(y) ⩾ 2k + 2 for every xV 1 and yV 2 with xy $ \notin $ \notin E(G), then G contains k independent cycles. This result is a response to Enomoto’s problems on independent cycles in a bipartite graph.  相似文献   

15.
《代数通讯》2013,41(5):2095-2140
Abstract

We construct an associative algebra A k and show that there is a representation of A k on V ?k , where V is the natural 2n-dimensional representation of the Lie superalgebra 𝔭(n). We prove that A k is the full centralizer of 𝔭(n) on V ?k , thereby obtaining a “Schur-Weyl duality” for the Lie superalgebra 𝔭(n). This result is used to understand the representation theory of the Lie superalgebra 𝔭(n). In particular, using A k we decompose the tensor space V ?k , for k = 2 or 3, and show that V ?k is not completely reducible for any k ≥ 2.  相似文献   

16.
For a simple graph G?=?(𝒱, ?) with vertex-set 𝒱?=?{1,?…?,?n}, let 𝒮(G) be the set of all real symmetric n-by-n matrices whose graph is G. We present terminology linking established as well as new results related to the minimum rank problem, with spectral properties in graph theory. The minimum rank mr(G) of G is the smallest possible rank over all matrices in 𝒮(G). The rank spread r v (G) of G at a vertex v, defined as mr(G)???mr(G???v), can take values ??∈?{0,?1,?2}. In general, distinct vertices in a graph may assume any of the three values. For ??=?0 or 1, there exist graphs with uniform r v (G) (equal to the same integer at each vertex v). We show that only for ??=?0, will a single matrix A in 𝒮(G) determine when a graph has uniform rank spread. Moreover, a graph G, with vertices of rank spread zero or one only, is a λ-core graph for a λ-optimal matrix A in 𝒮(G). We also develop sufficient conditions for a vertex of rank spread zero or two and a necessary condition for a vertex of rank spread two.  相似文献   

17.
Let V be an n-dimensional vector space (4≤n<∞) and let Gk(V){\mathcal{G}}_{k}(V) be the Grassmannian formed by all k-dimensional subspaces of V. The corresponding Grassmann graph will be denoted by Γ k (V). We describe all isometric embeddings of Johnson graphs J(l,m), 1<m<l−1 in Γ k (V), 1<k<n−1 (Theorem 4). As a consequence, we get the following: the image of every isometric embedding of J(n,k) in Γ k (V) is an apartment of Gk(V){\mathcal{G}}_{k}(V) if and only if n=2k. Our second result (Theorem 5) is a classification of rigid isometric embeddings of Johnson graphs in Γ k (V), 1<k<n−1.  相似文献   

18.
《代数通讯》2013,41(3):1453-1474
Abstract

Let 𝕂 be a field of characteristic zero, and R be a G-graded 𝕂-algebra. We consider the algebra R ? E, then deduce its G × ?2-graded polynomial identities starting from the G-graded polynomial identities of R. As a consequence, we describe a basis for the ? n  × ?2-graded identities of the algebras M n (E). Moreover we give the graded cocharacter sequence of M 2(E), and show that M 2(E) is PI-equivalent to M 1,1(E) ? E. This fact is a particular case of a more general result obtained by Kemer.  相似文献   

19.
For a graph G whose number of edges is divisible by k, let R(G,Zk) denote the minimum integer r such that for every function f: E(Kr) ? Zk there is a copy G1 of G in Kr so that Σe∈E(G1) f(e) = 0 (in Zk). We prove that for every integer k1 R(Kn, Zk)n + O(k3 log k) provided n is sufficiently large as a function of k and k divides (). If, in addition, k is an odd prime-power then R(Kn, Zk)n + 2k - 2 and this is tight if k is a prime that divides n. A related result is obtained for hypergraphs. It is further shown that for every graph G on n vertices with an even number of edges R(G,Z2)n + 2. This estimate is sharp. © 1993 John Wiley & Sons, Inc.  相似文献   

20.
 We prove that for every ε>0 and positive integer r, there exists Δ00(ε) such that if Δ>Δ0 and n>n(Δ,ε,r) then there exists a packing of K n with ⌊(n−1)/Δ⌋ graphs, each having maximum degree at most Δ and girth at least r, where at most εn 2 edges are unpacked. This result is used to prove the following: Let f be an assignment of real numbers to the edges of a graph G. Let α(G,f) denote the maximum length of a monotone simple path of G with respect to f. Let α(G) be the minimum of α(G,f), ranging over all possible assignments. Now let αΔ be the maximum of α(G) ranging over all graphs with maximum degree at most Δ. We prove that Δ+1≥αΔ≥Δ(1−o(1)). This extends some results of Graham and Kleitman [6] and of Calderbank et al. [4] who considered α(K n ). Received: March 15, 1999?Final version received: October 22, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号