首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Let n be a positive integer, and C n (r) the set of all n × n r-circulant matrices over the Boolean algebra B = {0, 1}, . For any fixed r-circulant matrix C (C ≠ 0) in G n , we define an operation “*” in G n as follows: A * B = ACB for any A, B in G n , where ACB is the usual product of Boolean matrices. Then (G n , *) is a semigroup. We denote this semigroup by G n (C) and call it the sandwich semigroup of generalized circulant Boolean matrices with sandwich matrix C. Let F be an idempotent element in G n (C) and M(F) the maximal subgroup in G n (C) containing the idempotent element F. In this paper, the elements in M(F) are characterized and an algorithm to determine all the elements in M(F) is given.  相似文献   

2.
Let Vdenote either the space of n×n hermitian matrices or the space of n×nreal symmetric matrices, Given nonnegative integers r,s,t such that r+S+t=n, let G( r,s,r) denote the set of all matrices in V with inertia (r,s,t). We consider here linear operators on V which map G(r,s,t) into itself.  相似文献   

3.
Extending to r > 1 a formula of the authors, we compute the expected reflection distance of a product of t random reflections in the complex reflection group G(r, 1, n). The result relies on an explicit decomposition of the reflection distance function into irreducible G(r, 1, n)-characters and on the eigenvalues of certain adjacency matrices.Received December 8, 2003  相似文献   

4.
Efficient parallel algorithms are presented, on the CREW PRAM model, for generating a succinct encoding of all pairs shortest path information in a directed planar graphG with real-valued edge costs but no negative cycles. We assume that a planar embedding ofG is given, together with a set ofq faces that cover all the vertices. Then our algorithm runs inO(log2 n) time and employsO(nq+M(q)) processors (whereM(t) is the number of processors required to multiply twot×t matrices inO(logt) time). Let us note here that wheneverq<n then our processor bound is better than the best previous one (M(n)).O(log2 n) time,n-processor algorithms are presented for various subproblems, including that of generating all pairs shortest path information in a directedouterplanar graph. Our work is based on the fundamental hammock-decomposition technique of G. Frederickson. We achieve this decomposition inO(logn log*n) parallel time by usingO(n) processors. The hammock-decomposition seems to be a fundamental operation that may help in improving efficiency of many parallel (and sequential) graph algorithms.This work was partially supported by the EEC ESPRIT Basic Research Action No. 3075 (ALCOM) and by the Ministry of Industry, Energy and Technology of Greece.  相似文献   

5.
In a recent paper, A. Bialostocki (Israel J. Math.41 (1982), 261-273) has defined a nilpotent injector in an arbitrary finite group G to be a maximal nilpotent subgroup of G, containing a subgroup H of G of maximal order satisfying class (H) ≤2. In the present paper, the author determines the nilpotent injectors of GL(n, q) and shows that they form a unique conjugacy class of subgroups of GL(n, q). It is also proved that if n ≠ 2 or n = 2 and q ≠ 9 is not a Fermat prime >3, then the nilpotent injectors of GL(n, q) are the nilpotent subgroups of maximal order.  相似文献   

6.
7.
A graph G is said to be Pt‐free if it does not contain an induced path on t vertices. The i‐center Ci(G) of a connected graph G is the set of vertices whose distance from any vertex in G is at most i. Denote by I(t) the set of natural numbers i, ⌊t/2⌋ ≤ it − 2, with the property that, in every connected Pt‐free graph G, the i‐center Ci(G) of G induces a connected subgraph of G. In this article, the sharp upper bound on the diameter of G[Ci(G)] is established for every iI(t). The sharp lower bound on I(t) is obtained consequently. © 1999 John Wiley & Sons, Inc. J Graph Theory 30: 235–241, 1999  相似文献   

8.
Guohua Qian 《代数通讯》2013,41(12):5183-5194
Let G be a finite group and M n (G) be the set of n-maximal subgroups of G, where n is an arbitrary given positive integer. Suppose that M n (G) contains a nonidentity member and all members in M n (G) are S-permutable in G. Then any of of the following conditions guarantees the supersolvability of G: (1) M n (G) contains a nonidentity member whose order is not a prime; (2) all nonidentity members in M n (G) are of prime order, and all cyclic members in M n?1(G) of order 4 are S-permutable in G.  相似文献   

9.
A t-spread set [1] is a set C of (t + 1) × (t + 1) matrices over GF(q) such that ∥C∥ = qt+1, 0 ? C, I?C, and det(X ? Y) ≠ 0 if X and Y are distinct elements of C. The amount of computation involved in constructing t-spread sets is considerable, and the following construction technique reduces somewhat this computation. Construction: Let G be a subgroup of GL(t + 1, q), (the non-singular (t + 1) × (t + 1) matrices over GF(q)), such that ∥G∥|at+1, and det (G ? H) ≠ 0 if G and H are distinct elements of G. Let A1, A2, …, An?GL(t + 1, q) such that det(Ai ? G) ≠ 0 for i = 1, …, n and all G?G, and det(Ai ? AjG) ≠ 0 for i > j and all G?G. Let C = &{0&} ∪ G ∪ A1G ∪ … ∪ AnG, and ∥C∥ = qt+1. Then C is a t-spread set. A t-spread set can be used to define a left V ? W system over V(t + 1, q) as follows: x + y is the vector sum; let e?V(t + 1, q), then xoy = yM(x) where M(x) is the unique element of C with x = eM(x). Theorem: LetCbe a t-spread set and F the associatedV ? Wsystem; the left nucleus = {y | CM(y) = C}, and the middle nucleus = }y | M(y)C = C}. Theorem: ForCconstructed as aboveG ? {M(x) | x?Nλ}. This construction technique has been applied to construct a V ? W system of order 25 with ∥Nλ∥ = 6, and ∥Nμ∥ = 4. This system coordinatizes a new projective plane.  相似文献   

10.
Letp be a prime,n a positive integer. Suppose thatG is a finite solvablep'-group acted on by an elementary abelianp-groupA. We prove that ifC G (ϕ) is of nilpotent length at mostn for every nontrivial element ϕ ofA and |A|≥p n+1 thenG is of nilpotent length at mostn+1.  相似文献   

11.
Let CM be the bundle of connections of a principal G-bundle PM over a pseudo-Riemannian manifold (M,g) of signature (n+, n) and let EM be the associated bundle with P under a linear representation of G on a finite-dimensional vector space. For an arbitrary Lie group G, the O(n+, n) × G-invariant quadratic Lagrangians on J1(C × M E) are characterized. In particular, for a simple Lie group the Yang–Mills and Yang–Mills–Higgs Lagrangians are characterized, up to an scalar factor, to be the only O(n+, n) × G-invariant quadratic Lagrangians. These results are also analyzed on several examples of interest in gauge theory. Submitted: May 19, 2005; Accepted: April 25, 2006  相似文献   

12.
A set S of vertices of a graph G is a total dominating set, if every vertex of V(G) is adjacent to some vertex in S. The total domination number of G, denoted by γt(G), is the minimum cardinality of a total dominating set of G. We prove that, if G is a graph of order n with minimum degree at least 3, then γt(G) ≤ 7n/13. © 2000 John Wiley & Sons, Inc. J Graph Theory 34:9–19, 2000  相似文献   

13.
The following theorem is proved. Let G be a finite group of odd order admitting an involutory automorphism φ. Suppose that G has derived length d and that CG(φ) is nilpotent of class c. Assume that CG(φ) is a m-generator. Then [G,φ] is nilpotent of {c,d,m}-bounded class.  相似文献   

14.
Let K be a field of characteristic zero. For a torsion-free finitely generated nilpotent group G, we naturally associate four finite dimensional nilpotent Lie algebras over K, ? K (G), grad(?)(? K (G)), grad(g)(exp ? K (G)), and L K (G). Let 𝔗 c be a torsion-free variety of nilpotent groups of class at most c. For a positive integer n, with n ≥ 2, let F n (𝔗 c ) be the relatively free group of rank n in 𝔗 c . We prove that ? K (F n (𝔗 c )) is relatively free in some variety of nilpotent Lie algebras, and ? K (F n (𝔗 c )) ? L K (F n (𝔗 c )) ? grad(?)(? K (F n (𝔗 c ))) ? grad(g)(exp ? K (F n (𝔗 c ))) as Lie algebras in a natural way. Furthermore, F n (𝔗 c ) is a Magnus nilpotent group. Let G 1 and G 2 be torsion-free finitely generated nilpotent groups which are quasi-isometric. We prove that if G 1 and G 2 are relatively free of finite rank, then they are isomorphic. Let L be a relatively free nilpotent Lie algebra over ? of finite rank freely generated by a set X. Give on L the structure of a group R, say, by means of the Baker–Campbell–Hausdorff formula, and let H be the subgroup of R generated by the set X. We show that H is relatively free in some variety of nilpotent groups; freely generated by the set X, H is Magnus and L ? ??(H) ? L ?(H) as Lie algebras. For relatively free residually torsion-free nilpotent groups, we prove that ? K and L K are isomorphic as Lie algebras. We also give an example of a finitely generated Magnus nilpotent group G, not relatively free, such that ??(G) is not isomorphic to L ?(G) as Lie algebras.  相似文献   

15.
Given AεMn (C) and BεM n,k (C) all possible inertias occurring in the Hermitian part of A+BX are determined as X runs over Mk,n(C).  相似文献   

16.
For a graph G, denote by t(G) (resp. b(G)) the maximum size of a triangle‐free (resp. bipartite) subgraph of G. Of course for any G, and a classic result of Mantel from 1907 (the first case of Turán's Theorem) says that equality holds for complete graphs. A natural question, first considered by Babai, Simonovits and Spencer about 20 years ago is, when (i.e., for what p = p(n)) is the “Erd?s‐Rényi” random graph G = G(n,p) likely to satisfy t(G) = b(G)? We show that this is true if for a suitable constant C, which is best possible up to the value of C. © 2014 Wiley Periodicals, Inc. Random Struct. Alg., 47, 59–72, 2015  相似文献   

17.
In this paper gradient flows on unitary matrices are studied that maximize the real part of the C-numerical range of an arbitrary complex n×n-matrix A. The geometry of the C-numerical range can be quite complicated and is only partially understood. A numerical discretization scheme of the gradient flow is presented that converges to the set of critical points of the cost function. Special emphasis is taken on a situation arising in NMR spectroscopy where the matrices C,A are nilpotent and the C-numerical range is a circular disk in the complex plane around the origin.  相似文献   

18.
We consider random walks on several classes of graphs and explore the likely structure of the vacant set, i.e. the set of unvisited vertices. Let Γ(t) be the subgraph induced by the vacant set of the walk at step t. We show that for random graphs Gn,p (above the connectivity threshold) and for random regular graphs Gr,r ≥ 3, the graph Γ(t) undergoes a phase transition in the sense of the well‐known ErdJW‐RSAT1100590x.png ‐Renyi phase transition. Thus for t ≤ (1 ‐ ε)t*, there is a unique giant component, plus components of size O(log n), and for t ≥ (1 + ε)t* all components are of size O(log n). For Gn,p and Gr we give the value of t*, and the size of Γ(t). For Gr, we also give the degree sequence of Γ(t), the size of the giant component (if any) of Γ(t) and the number of tree components of Γ(t) of a given size k = O(log n). We also show that for random digraphs Dn,p above the strong connectivity threshold, there is a similar directed phase transition. Thus for t ≤ (1 ‐ ε)t*, there is a unique strongly connected giant component, plus strongly connected components of size O(log n), and for t ≥ (1 + ε)t* all strongly connected components are of size O(log n). © 2012 Wiley Periodicals, Inc. Random Struct. Alg., 2012  相似文献   

19.
20.
Let m and n be nonnegative integers. Denote by P(m,n) the set of all triangle-free graphs G such that for any independent m-subset M and any n-subset N of V(G) with MN = Ø, there exists a unique vertex of G that is adjacent to each vertex in M and nonadjacent to any vertex in N. We prove that if m ? 2 and n ? 1, then P(m,n) = Ø whenever m ? n, and P(m,n) = {Km,n+1} whenever m > n. We also have P(1,1) = {C5} and P(1,n) = Ø for n ? 2. In the degenerate cases, the class P(0,n) is completely determined, whereas the class P(m,0), which is most interesting, being rich in graphs, is partially determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号