首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
    
Let A and B be n?×?n matrices over an algebraically closed field F. The pair ( A,?B ) is said to be spectrally complete if, for every sequence c1,…,cn ∈F such that det (AB)=c1 ,…,cn , there exist matrices A′,B,′∈F,n×n similar to A,?B, respectively, such that A′B′ has eigenvalues c1,…,cn . In this article, we describe the spectrally complete pairs. Assuming that A and B are nonsingular, the possible eigenvalues of A′B′ when A′ and B′ run over the sets of the matrices similar to A and B, respectively, were described in a previous article.  相似文献   

4.
We give an easy proof of a result in [1] generalizing the well-known Borsuks non-retraction theorem.  相似文献   

5.
In this article, we characterize generalized ultrametric matrices whose inverses are tree-diagonal. This generalizes the results of McDonald, Nabben, Neumann, Schneider and Tsatsomeros for tri-diagonal matrices.  相似文献   

6.
For an undirected simple graph G, the minimum rank among all positive semidefinite matrices with graph G is called the minimum semidefinite rank (msr) of G. In this paper, we show that the msr of a given graph may be determined from the msr of a related bipartite graph. Finding the msr of a given bipartite graph is then shown to be equivalent to determining which digraphs encode the zero/nonzero pattern of a unitary matrix. We provide an algorithm to construct unitary matrices with a certain pattern, and use previous results to give a lower bound for the msr of certain bipartite graphs.  相似文献   

7.
The minimum rank of a graph is the smallest possible rank among all real symmetric matrices with the given graph. The minimum semidefinite rank of a graph is the minimum rank among Hermitian positive semidefinite matrices with the given graph. We explore connections between OS-sets and a lower bound for minimum rank related to zero forcing sets as well as exhibit graphs for which the difference between the minimum semidefinite rank and these lower bounds can be arbitrarily large.  相似文献   

8.
We study the minimum semidefinite rank of a graph using vector representations of the graph and of certain subgraphs. We present a sufficient condition for when the vectors corresponding to a set of vertices of a graph must be linearly independent in any vector representation of that graph, and conjecture that the resulting graph invariant is equal to minimum semidefinite rank. Rotation of vector representations by a unitary matrix allows us to find the minimum semidefinite rank of the join of two graphs. We also improve upon previous results concerning the effect on minimum semidefinite rank of the removal of a vertex.  相似文献   

9.
Algebraic connectivity of directed graphs   总被引:1,自引:0,他引:1  
We consider a generalization of Fiedler's notion of algebraic connectivity to directed graphs. We show that several properties of Fiedler's definition remain valid for directed graphs and present properties peculiar to directed graphs. We prove inequalities relating the algebraic connectivity to quantities such as the bisection width, maximum directed cut and the isoperimetric number. Finally, we illustrate an application to the synchronization in networks of coupled chaotic systems.  相似文献   

10.
    
We consider a generalization of Fiedler's notion of algebraic connectivity to directed graphs. We show that several properties of Fiedler's definition remain valid for directed graphs and present properties peculiar to directed graphs. We prove inequalities relating the algebraic connectivity to quantities such as the bisection width, maximum directed cut and the isoperimetric number. Finally, we illustrate an application to the synchronization in networks of coupled chaotic systems.  相似文献   

11.
Let G=(V,E) be a graph with V={1,2,…,n}. Denote by S(G) the set of all real symmetric n×n matrices A=[ai,j] with ai,j≠0, ij if and only if ij is an edge of G. Denote by I(G) the set of all pairs (p,q) of natural numbers such that there exists a matrix AS(G) with at most p positive and q negative eigenvalues. We show that if G is the join of G1 and G2, then I(G)?{(1,1)}=I(G1K1)∩I(G2K1)?{(1,1)}. Further, we show that if G is a graph with s isolated vertices, then , where denotes the graph obtained from G be removing all isolated vertices, and we give a combinatorial characterization of graphs G with (1,1)∈I(G). We use these results to determine I(G) for every complete multipartite graph G.  相似文献   

12.
We study the quasi-strongly regular graphs, which are a combinatorial generalization of the strongly regular and the distance regular graphs. Our main focus is on quasi-strongly regular graphs of grade 2. We prove a “spectral gap”-type result for them which generalizes Seidel's well-known formula for the eigenvalues of a strongly regular graph. We also obtain a number of necessary conditions for the feasibility of parameter sets and some structural results. We propose the heuristic principle that the quasi-strongly regular graphs can be viewed as a “lower-order approximation” to the distance regular graphs. This idea is illustrated by extending a known result from the distance-regular case to the quasi-strongly regular case. Along these lines, we propose a number of conjectures and open problems. Finally, we list the all the proper connected quasi-strongly graphs of grade 2 with up to 12 vertices.  相似文献   

13.
In this article, we present new bounds for the zeros of polynomials depending on some estimates for the spectral norms and the spectral radii of the square and the cube of the Frobenius companion matrix.  相似文献   

14.
Lower bounds on the third smallest laplacian eigenvalue of a graph   总被引:1,自引:0,他引:1  
We introduce a new graph-theoretic invariant ω(G) for a simple graph G, and relate it to the third smallest Laplace eigenvalue of G.  相似文献   

15.
    
We introduce a new graph-theoretic invariant ω(G) for a simple graph G, and relate it to the third smallest Laplace eigenvalue of G.  相似文献   

16.
17.
    
We consider the effects on the algebraic connectivity of various graphs when vertices and graphs are appended to the original graph. We begin by considering weighted trees and appending a single isolated vertex to it by adding an edge from the isolated vertex to some vertex in the tree. We then determine the possible set vertices in the tree that can yield the maximum change in algebraic connectivity under such an operation. We then discuss the changes in algebraic connectivity of a star when various graphs such as trees and complete graphs are appended to its pendant vertices.  相似文献   

18.
The zero forcing number Z(G), which is the minimum number of vertices in a zero forcing set of a graph G, is used to study the maximum nullity/minimum rank of the family of symmetric matrices described by G. It is shown that for a connected graph of order at least two, no vertex is in every zero forcing set. The positive semidefinite zero forcing number Z+(G) is introduced, and shown to be equal to |G|-OS(G), where OS(G) is the recently defined ordered set number that is a lower bound for minimum positive semidefinite rank. The positive semidefinite zero forcing number is applied to the computation of positive semidefinite minimum rank of certain graphs. An example of a graph for which the real positive symmetric semidefinite minimum rank is greater than the complex Hermitian positive semidefinite minimum rank is presented.  相似文献   

19.
Let G=(V,E) be a graph with V={1,2,…,n}. Define S(G) as the set of all n×n real-valued symmetric matrices A=[aij] with aij≠0,ij if and only if ijE. By M(G) we denote the largest possible nullity of any matrix AS(G). The path cover number of a graph G, denoted P(G), is the minimum number of vertex disjoint paths occurring as induced subgraphs of G which cover all the vertices of G.There has been some success with relating the path cover number of a graph to its maximum nullity. Johnson and Duarte [5], have shown that for a tree T,M(T)=P(T). Barioli et al. [2], show that for a unicyclic graph G,M(G)=P(G) or M(G)=P(G)-1. Notice that both families of graphs are outerplanar. We show that for any outerplanar graph G,M(G)?P(G). Further we show that for any partial 2-path G,M(G)=P(G).  相似文献   

20.
We consider the effects on the algebraic connectivity of various graphs when vertices and graphs are appended to the original graph. We begin by considering weighted trees and appending a single isolated vertex to it by adding an edge from the isolated vertex to some vertex in the tree. We then determine the possible set vertices in the tree that can yield the maximum change in algebraic connectivity under such an operation. We then discuss the changes in algebraic connectivity of a star when various graphs such as trees and complete graphs are appended to its pendant vertices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号