首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The effects of suction or blowing at the surface of a rotating cone in a quiet fluid on the skin friction and heat transfer are described. The equations which govern the fluid motion and thermal energy transfer are transformed by the boundary layer approximations and the resulting equations are solved under the condition that the suction or blowing velocity varies as x n (x: distance measured from the apex of the cone, n: arbitrary constant). The solutions are obtained as a perturbation from the basic laminar flow of an incompressible viscous fluid over the impermeable rotating cone. Detailed numerical calculations are performed for the case of an isothermal rotating cone with uniform blowing or suction, i.e. n=0, the Prandtl number being 0.72. Results are given for the shear stress, heat transfer and velocity and temperature fields. It is shown from the analysis that suction sharply increases the circumferential shear stress and the heat transfer at the surface.Nomenclature c proportional constant - C fx dimensionless skin friction factor, x /(V 2) - C fx0 dimensionless skin friction factor for an impermeable cone - C fy dimensionless circumferential skin friction factor, y /(V 2) - C fy0 dimensionless circumferential skin friction factor for an impermeable cone - c p specific heat at constant pressure - f k function of - g k function of - h heat transfer coefficient, q/(T wT ) - k thermal conductivity of fluid - n arbitrary constant - Nu x local Nusselt number, hx/k - Nu x0 local Nusselt number for an impermeable cone - Pr Prandtl number - q heat transfer rate - r radius of a circular cross section of the cone, x sin - R x Reynolds number, Vx/ - T temperature - T w surface temperature of the cone - T temperature of the surrounding fluid - u fluid velocity in x-direction - v fluid velocity in y-direction - V circumferential velocity at the cone surface, r - w fluid velocity in z-direction - x coordinate along meridional section - y coordinate along a circular cross section - z coordinate perpendicular to both x and y - perturbation parameter, cx n /(x sin )1/2 - dimensionless z-coordinate, z( sin /)1/2 - k function of - kinematic viscosity - density of fluid - x skin friction in x-direction - y circumferential skin friction - stream function - angular speed of the cone  相似文献   

3.
4.
5.
Self-similar solutions of nonstationary equations of the boundary layer in ordinary hydrodynamics are discussed in [1, 2]. In this paper self-similar solutions of nonstationary equations of a plane magnetohydrodynarnic boundary layer are sought. In this case, a transformation to curvilinear coordinates of a certain special form is employed. Its choice is determined by the requirements essential to reducing the equations of the boundary layer to a system of ordinary equations. H. Weyl's iterative method is used to solve the equations describing the flow over a plate suddenly set in motion.  相似文献   

6.
The results of a systematic study of self-similar solutions of the Blasius equation are presented for a wide range of both normal and tangential surface injection velocities. Only flows with non-vanishing shear are considered; however, an arbitrary orientation of the injection vector is allowed. It is found that a positive tangential component of injection (downstream vectoring) significantly increases the mass transfer rate required to blow off the boundary layer. For upstream vectoring, a new group of solutions is found over a certain range of the tangential wall velocity wherein the wall shear is doublevalued.
Zusammenfassung Es wird eine systematische Untersuchung ähnlicher Lösungen der Blasius-Gleichung in einem weiten Bereich der normalen und tangentialen Ausblasgeschwindigkeit vorgelegt, wobei nur Strömungen mit nicht-verschwindender Schubspannung, aber beliebiger Ausblasrichtung betrachtet werden. Man findet, daß eine positive tangentiale (stromabwärts gerichtete) Komponente der Ausblasgeschwindigkeit den Stoff-übergangsstrom beträchtlich erhöht, der zum Wegblasen der Grenzschicht erforderlich ist. Für stromaufwärts gerichtetes Ausblasen wird eine neue Gruppe von Lösungen in einem gewissen Bereich der tangentialen Wandgeschwindigkeit gefunden, innerhalb dessen die Wandschubspannung verdoppelt wird.
  相似文献   

7.
An asymptotic solution is obtained for the equations of the laminar multicomponent boundary layer encountered in the plane-parallel and axially symmetrical flow of a gas with large values of the suction parameter. It is shown that the roots of the characteristic equation to which the solution of the diffusion equations reduce in the first approximation may be found in the form of radicals when the external gas flow contains chemical components capable of being combined into r5 groups as regards their diffusion properties. The number of components in the groups and the number of components in the boundary layer may be arbitrary. Asymptotic equations are obtained for the coefficient of friction, the temperature and concentration gradients, and the diffusion flows of the components on the surface of the body. By way of example, formulas are given for the thermal flux passing to a body during the flow of dissociated air or a dissociated mixture of N2 and CO2. A numerical solution is given for the equations of the boundary layer in the case of the flow of dissociated air. The asymptotic solution is compared with the numerical result, and the range of applicability of the asymptotic equations is established.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 66–74, November–December, 1970.The author wishes to thank G. A. Tirskii for discussion of this analysis.  相似文献   

8.
An analysis is performed to study a laminar boundary layer flow over a porous flat plate with injection or suction imposed at the wall. The basic equations of this problem are reduced to a system of nonlinear ordinary differential equations by means of appropriate transformations. These equations are solved analytically by the optimal homotopy asymptotic method (OHAM), and the solutions are compared with the numerical solution (NS). The effect of uniform suction/injection on the heat transfer and velocity profile is discussed. A constant surface temperature in thermal boundary conditions is used for the horizontal flat plate.  相似文献   

9.
A numerical procedure was developed to solve the two-dimensional and axisymmetric incompressible laminar boundary layer equations using the semi-discrete Galerkin finite element method. Linear Lagrangian, quadratic Lagrangian, and cubic Hermite interpolating polynomials were used for the finite element discretization; the first-order, the second-order backward difference approximation, and the Crank-Nicolson method were used for the system of non-linear ordinary differential equations; the Picard iteration and the Newton-Raphson technique were used to solve the resulting non-linear algebraic system of equations. Conservation of mass is treated as a constraint condition in the procedure; hence, it is integrated numerically along the solution line while marching along the time-like co-ordinate. Among the numerical schemes tested, the Picard iteration technique used with the quadratic Lagrangian polynomials and the second-order backward difference approximation case turned out to be the most efficient to achieve the same accuracy. The advantages of the method developed lie in its coarse grid accuracy, global computational efficiency, and wide applicability to most situations that may arise in incompressible laminar boundary layer flows.  相似文献   

10.
11.
Planar and axisymmetric flows of a multicomponent compressible gas in a laminar boundary layer with nonzero tangential component of the velocity on a permeable surface are considered. The asymptotic solutions of the boundary-layer equations obtained earlier [1–4] for large values of the blowing and suction parameters are generalized to the case when the velocity vector of the blown or extracted gas makes an acute angle with the surface of the body, this angle depending on the longitudinal coordinate. The region of applicability of the asymptotic formulas is estimated on the basis of the results of numerical solution of the boundary-layer equations. The results are given of some calculations of the boundary layer on a partly moving surface.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 28–36, September–October, 1979.We thank G. A. Tirskii and G. G. Chernyi for a helpful discussion of the results.  相似文献   

12.
13.
14.
15.
The flow in the exit plane and on the suction surface of an annular turbine cascade was examined experimentally for conditions of inlet boundary layer skewing similar to that found in a real turbine and for the collateral inlet as found in most cascade tests. Skewing was introduced by rotating the nose cone ahead of the cascade.At the cascade exit, the loss distribution pattern, as measured by a 3 hole cobra probe, showed that the corner vortex at the hub is displaced radially to almost a mid-span position by the skewed inlet boundary layer. This movement was attributed to the stronger endwall crossflows being radially directed as they strike and rise up onto the suction surface. The radial displacement and endwall crossflow effect was also seen in surface flow visualization studies.The overall cascade loss coefficient and deviation angle are significantly reduced by skewing. Traverses taken on the suction surface confirmed the separated flow effects seen in the flow visualization pictures.The general conclusion is that skewing plays a significant role in determining the flow phenomena in turbine cascades and that these effects should be borne in mind when interpreting the results taken from plane cascades.  相似文献   

16.
The modifications of a turbulent boundary layer induced by blowing through a porous plate were investigated using large-eddy simulation. The Reynolds number (based on the length of the plate) of the main flow was about 850000. Large-eddy simulations of such a boundary layer needs a turbulent inflow condition. After a review of available turbulent inflow, we describe in details the condition we developed, which consisted of recycling the velocity fluctuations. Then we show the necessity for this inflow to be non-stationary and to be three dimensional with respect to the mass conservation equation. If these properties are not achieved, we found that the velocity fluctuations do not grow as expected along the domain. Finally, the results of simulations of the boundary layer submitted to blowing are compared with experimental measurements. The good agreement obtained validate our turbulent inflow conditions and also the blowing model used. PACS 47.27.Eq, 47.27.Te, 44.20.+b  相似文献   

17.
18.
19.
20.
Similarity analysis of diffusion of chemically reactive solute distribution in MHD boundary layer flow of an electrically conducting incompressible fluid over a porous flat plate is presented. The reaction rate of the solute is considered inversely proportional along the plate. Adopting the similarity transformation technique the governing equations are converted into the self-similar ordinary differential equations which are solved by shooting procedure using Runge-Kutta method. For increase of the Schmidt number the solute boundary layer thickness is reduced. Most importantly, the effects of reaction rate and order of reaction on concentration field are of conflicting natures, due to increasing reaction rate parameter the concentration decreases, but for the increase in order of reaction it increases. In presence of chemical reaction, the concentration profiles attain negative value when Schmidt number is large.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号