共查询到20条相似文献,搜索用时 0 毫秒
1.
使用SAC/SAC-CI方法,利用6-311 g,6-311g**及cc-PVTZ等基组,对Na2分子的基态(X1Σg )、第一激发态(A1Σu )和第二激发态(B1Πu)的平衡结构和谐振频率进行计算.通过对3个基组的计算结果的比较,得出6-311g**基组为3个基组中最优基组的结论;使用6-311g**基组,分别利用SAC的GSUM(Group Sum of Operators)方法对基态(X1Σg ),SAC-CI的GSUM方法对激发态(A1Σu )和(B1Πu)进行单点能扫描计算,用正规方程组拟合Murrell-Sorbie函数,得到相应电子态的完整势能函数.用得到的势能函数计算与基态(X1Σg ),第一激发态(A1Σu )和第二激发态(B1Πu)相对应的光谱常数(Be,αe,ωe和ωeχe),结果与实验数据基本吻合. 相似文献
2.
使用SAC/SAC-CI方法,利用6-311G,6-311 G,6-311G(3df,3pd),D95V(d,p),D95,D95V,6-311 G(3df,3pd),D95(3df,3pd)、cc-PVTZ和AUG-cc-PVTZ等基组,对Li2分子的B1∏u及X1Σg 态的平衡几何进行了优化计算.同时,在优化得到的平衡位置附近、于同一条件下通过精细的单点能扫描,也获得了相应基组下的平衡核间距.发现优化计算结果与精细的单点能扫描结果不一致.分析表明由单点能扫描获得的平衡核间距应更为合理.通过对平衡核间距及计算离解能的比较,得出了对B1∏u态而言AUG-cc-PVTZ基组为最优基组的结论.在AUG-cc-PVTZ基组下,于0.135~1.5 nm范围内,利用SAC的GSUM(Group Sumof Operators)方法对X1Σg 态、SAC-CI的GSUM方法对B1∏u态进行单点能扫描、并用正规方程组拟合出了相应的解析势能函数.利用解析势能函数的物理意义并结合RKR方法,计算出了X1Σg 态及B1∏u态的谐振频率,理论计算结果与实验值较为一致. 相似文献
3.
使用SAC/SAC-CI方法,利用D95、D95(d)、6-311g以及6-311g(d)等基组,对Li2分子的基态(X^1∑g^ )、第一激发态(A^1∑u^ )及第二激发态(B^1Пu)的平衡结构和谐振频率进行了优化计算。通过对四个基组的计算结果的比较,得出了D95(d)基组为四个基组中的最优基组的结论;使用D95(d)基组,利用SAC的GSUM(Group Sum of Operators)方法对基态(X^1∑g^ )、SAC-CI的GSUM方法对激发态(A^1∑u^ 和B^1Пu)进行单点能扫描计算,用正规方程组拟合Murrell-Sorbie函数,得到了相应电子态的完整势能函数;从得到的势能函数计算了与基态(X^1∑g^ )、第一激发态(A^1∑u^ )和第二激发态(B^1Пu)相对应的光谱常数(Be,ae,ωe和ωeχe),结果与实验数据较为一致。其中,基态、第一激发态与实验数据吻合得非常好。 相似文献
4.
使用SAC/SAC-CI方法,利用D95(d),6-311g**以及cc-PVTZ等基组,对B2分子的基态(X3Σg-)和第一激发态(A3Σu-)的平衡结构和谐振频率进行了优化计算.通过对3个基组的计算结果的比较,得出了D95(d)基组为3个基组中的最优基组的结论;使用D95(d)基组,利用SAC的GSUM(Group Sum of Operators)方法对基态(X3Σg-),SAC-CI的GSUM方法对激发态(A3Σu-)进行单点能扫描计算,用正规方程组拟合Murrell-Sorbie函数,得到了相应电子态的完整势能函数;从得到的势能函数计算了与基态(X3Σg-)和第一激发态(A3Σu-)相对应的光谱常数(Be,αe,ωe和ωeχe),结果与实验数据吻合. 相似文献
5.
使用SAC/SAC-CI方法,利用D95、D95(d)、6-311g以及6-311g(d)等基组,对Li2分子的基态(X1∑+g)、第一激发态(A1∑+u)及第二激发态(B 1Ⅱu)的平衡结构和谐振频率进行了优化计算.通过对四个基组的计算结果的比较,得出了D95(d)基组为四个基组中的最优基组的结论;使用D95(d)基组,利用SAC的GSUM(Group Sum of Operators)方法对基态(X1∑+g)、SAC-CI的GSUM方法对激发态(A1∑+u和B1Ⅱu)进行单点能扫描计算,用正规方程组拟合Murrell-Sorbie函数,得到了相应电子态的完整势能函数;从得到的势能函数计算了与基态(X1∑+g)、第一激发态(A1∑+u)和第二激发态(B1Ⅱu)相对应的光谱常数(Be,αe,ωe和ωexe),结果与实验数据较为一致.其中,基态、第一激发态与实验数据吻合得非常好. 相似文献
6.
使用SAC/SAC-CI方法,利用D95(d),6—311g^**以及cc-PVTZ等基组,对B2分子的基态(X^3∑g^-)和第一激发态(A^3∑u^-)的平衡结构和谐振频率进行了优化计算,通过对3个基组的计算结果的比较,得出了D95(d)基组为3个基组中的最优基组的结论;使用D95(d)基组,利用SAC的GSUM(Group Sum of Operators)方法对基态(X^3∑g^-),SAC-CI的GSUM方法对激发态(A^3∑u^-)进行单点能扫描计算,用正规方程组拟合MurreLl-Sorbie函数,得到了相应电子态的完整势能函数;从得到的势能函数计算了与基态(X^3∑g^-)和第一激发态(A^3∑u^-)相对应的光谱常数(Be,ae,ωe和ωeχe),结果与实验数据吻合。 相似文献
7.
用文献[1,2,8]介绍的方法推导了N2分子的基态(X1Σ+g)和激发态(A3Σ+u和B3Πg)的合理离解极限。计算并比较了在6-311G基集合,UHF、CID、UCISD和QCISD水平下N2分子上述三个电子态的平衡结构和谐振频率;并用QCISD/6-311G计算了各态的系列单点势能值,由正规方程组拟合Murrel-Sorbie函数得到了相应各态的完整势能函数,结果与实验数计算值符合得比较好。 相似文献
8.
使用SAC/SAC-CI方法,利用6-311 g,6-311g**及cc-PVTZ等基组,对Na2分子的基态(X1∑ g)、第一激发态(A1∑ g)和第二激发态(B1Ⅱu)的平衡结构和谐振频率进行计算.通过对3个基组的计算结果的比较,得出6-311g**基组为3个基组中最优基组的结论;使用6-311g**基组,分别利用SAC的GSUM(Group Sum of Operators)方法对基态(X1∑ g),SAC-CI的GSUM方法对激发态(A1∑ u)和(B1Ⅱu)进行单点能扫描计算,用正规方程组拟合Murrell-Sorbie函数,得到相应电子态的完整势能函数.用得到的势能函数计算与基态(X1∑ g),第一激发态(A1∑ u)和第二激发态(B1Ⅱu)相对应的光谱常数(Be,αe,we和weXe),结果与实验数据基本吻合. 相似文献
9.
使用SAC/SAC-CI方法,利用6-311G,6-311++G,6-311G(3df,3pd),D95V(d,P),D95,D95V,6-311++G(3df,3pd)。D95(3df,3pd)、cc—PVTZAt和AUG-cc-PVTZ等基组,对Li2分子的B^1IIu及X^1∑g^+态的平衡几何进行了优化计算.同时,在优化得到的平衡位置附近、于同一条件下通过精细的单点能扫描,也获得了相应基组下的平衡核间距、发现优化计算结果与精细的单点能扫描结果不一致.分析表明由单点能扫描获得的平衡核间距应更为合理.通过对平衡核间距及计算离解能的比较,得出了对B^1Ⅱu态而言AUG-cc-PVTZ基组为最优基组的结论.在AUG-cc-PVTZ基组下,于0.135~1.5nnl范围内,利用SAC的GSUM(Group Sum of Operators)方法对X^1∑g^+态、SAC-CI的GSUM方法对B^1Ⅱu态进行单点能扫描、并用正规方程组拟合出了相应的解析势能函数.利用解析势能函数的物理意义并结合RKR方法,计算出了X^1∑g^+态及B^1Ⅱu态的谐振频率,理论计算结果与实验值较为一致. 相似文献
10.
使用SAC/SAGCI方法,利用6-311G,6.311++G,6-311G(3df,3pd),D95V(d,p),D95,D95V,6-311++C(3af,3Pd),D95(3df,3t,d)、cc-PVTZ和AUG-cc-PVTZ等基组.对Li2分子的B1Ⅱu及X1∑+8态的平衡几何进行了优化计算.同时,在优化得到的平衡位置附近、于同一条件下通过精细的单点能扫描,也获得了相应基组下的平衡核间距.发现优化计算结果与精细的单点能扫描结果不一致.分析表明由单点能扫描获得的平衡核间距应更为合理.通过对平衡按间距及计算离解能的比较,得出了对B1ⅡU态而言AUG-OC-P扩12基组为最优基组的结论.在AUG-cc-PyIZ基组下,于0.135~l.5 nm范围內,利用SAC的GSUM(Group Sum of Operators)方法对X1∑+8态、SAC-CI的GSUM方法对月B1Ⅱu态进行单点能扫描、井用正規方程组拟合出了相应的解析势能函数.利用解析势能函数的物理意义并结合RKR方法,计算出了X1∑+8态及B1Ⅱu态的谐振频率,理论计算结果与实验值较为一致. 相似文献
11.
使用SAC/SAC-CI和D95 、6-311 g及D95(d)等基组,分别对AlF的基态X1Σ 、第一简并激发态A1Π和第二激发态B1Σ 的平衡结构和谐振频率进行了优化计算.对所有计算结果进行比较,得出D95(d)基组为最优基组;运用D95(d)基组和SAC方法对基态X1Σ ,SAC-CI方法对激发态A1Π和B1Σ 进行单点能扫描计算,并用正规方程组拟合Murrell-Sorbie函数,得到了相应电子态的势能函数解析式,由得到的势能函数计算了与X1Σ 、A1Π和B1Σ 态相对应的光谱常数,结果与实验数据较为一致. 相似文献
12.
LiH分子X 1Σ+、 A 1Σ+和B 1Π态的势能函数 总被引:1,自引:0,他引:1
利用SAC/SAC-CI方法,使用D95(d)、6-311G**及cc-PVTZ等基组,对LiH分子的基态(X1Σ+)、第一激发态(A1Σ+)及第二简并激发态(B1Π)的平衡结构和谐振频率进行了优化计算.通过对三个基组的计算结果的比较,得出了D95(d)基组为三个基组中的最优基组的结论;使用D95(d)基组,利用SAC的GSUM(GroupSumofOperators)方法对基态(X1Σ+)、SAC-CI的GSUM方法对激发态(A1Σ+和B1Π)进行单点能扫描计算,用正规方程组拟合Murrell-Sorbie函数,得到了相应电子态的完整势能函数;从得到的势能函数计算了与基态(X1Σ+)相对应的光谱常数,结果与实验数据较为一致. 相似文献
13.
使用“对称性匹配簇-组态相互作用”方法,对Li2分子三重态的第一激发态、LiH分子的基态、单重态的第一和第二激发态的几何构型与谐振频率进行了优化计算.利用“群操作求和”方法分别对这4个态进行单点能扫描计算,并拟合出了相应各态的Murrell-Sorbie势能函数.使用多种方法对Li2H分子的基态结构进行优化,并用优选出的密度泛函(B3P86)方法对该分子进行了进一步的频率计算.结果发现Li2H分子的基态稳态结构为C2v构型,在此基础上用多体项展式理论导出了它的解析势能函数,其等值势能图准确再现了Li2H分子的结构特征和离解能.首次报导了该分子对称伸缩振动等值势能图中存在的两个对称鞍点,对应于反应LiH Li→Li2H,活化能大约为18.7×4.184 KJ/mol. 相似文献
14.
AlH分子结构与分析势能函数 总被引:1,自引:4,他引:1
本文运用群论及原子分子反应静力学方法,推导了 AlH分子的基态(X1Σ+)、第一激发态(A1Π)及第三激发态(C1S+)的电子态及相应的离解极限.并使用SAC/SAC-CI方法,采用D95 (d)、6-311g(d)和cc-PVTZ等基组对AlH分子的基态(X1Σ+)、第一激发态(A1Π)和第三激发态(C1S+)的平衡结构和谐振频率进行了几何优化计算.通过对三个基组的计算结果与实验结果的比较,得到cc-PVTZ基组是三个基组中最优基组的结论.使用cc-PVTZ基组,对AlH 分子的基态(X1Σ+)、第一激发态(A1Π)和第三激发态(C1S+)进行了单点能扫描计算,并给出了AlH的基态(X1Σ+)、第一激发态(A1Π) 和第三激发态(C1S+)的Murrell-Sorbie函数形式的电子态的完整势能函数,进而得到了AlH分子第一激发态(A1Π)的激发能较小的结论. 相似文献
15.
采用量子力学从头算方法,运用二次组态相互作用方法QCISD(T)结合6-311 G(3df,2pd)基组对CaH,CaD分子基态进行了几何结构优化、计算出了它们的光谱数据(ωe、ωeχe、Be、αe、De),结果与实验光谱数据吻合较好,表明上述分子基态的势能函数可用Murrell-Sorbie函数来表示. 相似文献
16.
利用SAC/SAC—CI方法,使用D95(d)、6-311G**及CC—PVTZ等基组,对LiH分子的基态(X^1∑^+)、第一激发态(A^1∑^+)及第二简并激发态(B^1П)的平衡结构和谐振频率进行了优化计算.通过对三个基组的计算结果的比较,得出了D95(d)基组为三个基组中的最优基组的结论;使用D95(d)基组,利用SAC的GSUM(Group Sum of Operators)方法对基态(X^1∑^+)、SAC—CI的GSUM方法对激发态(A^1∑^+和B ^1П)进行单点能扫描计算,用正规方程组拟合Murrell—Sorbie函数,得到了相应电子态的完整势能函数;从得到的势能函数计算了与基态(X ^1∑^+)相对应的光谱常数,结果与实验数据较为一致. 相似文献
17.
对比分析了双原子分子的势能函数,发现用PG—高斯势函数表述低激发态双原子分子是一种可能的选择。按照微观过程原理和本文提出的“激发态选择规则”,可确定低激发态的离解极限与离解能,并导出63个激发态的PG—高斯势函数。 相似文献
18.
A1H分子结构与分析势能函数 总被引:2,自引:0,他引:2
本文运用群论及原子分子反应静力学方法,推导了A1H分子的基态(X^1Σ^ )、第一激发态(A^1Π)及第三激发态(C^1S^ )的电子态及相应的离解极限。并使用SAC/SAC-CI方法,采用D95(d)、6-311g(d)和cc-PVTZ等基组对A1H分子的基态(X^1Σ^ )、第一激发态(A^1Π)和第三激发态(C^1S^ )的平衡结构和谐振频率进行了几何优化计算。通过对三个基组的计算结果与实验结果的比较,得到cc-PVTZ基组是三个基组中最优基组的结论。使用cc-PVTZ基组,对A1H分子的基态(X^1Σ^ )、第一激发态(A^1Π)和第三激发态(C^1S^ )进行了单点能扫描计算,并给出了A1H的基态(X^1Σ^ )、第一激发态(A^1Π)和第三激发态(C^1S^ )的Murrell-Sorbie函数形式的电子态的完整势能函数,进而得到了AlH分子第一激发态(A^1Π)的激发能较小的结论。 相似文献
19.
采用量子力学从头算方法,运用二次组态相互作用方法QCISD(T)结合6—311++G(3df,2pd)基组对CaH,CaD分子基态进行了几何结构优化、计算出了它们的光谱数据(ωe、ωeχe、Be、αe、De),结果与实验光谱数据吻合较好,表明上述分子基态的势能函数可用Murrell—Sorbie函数来表示. 相似文献
20.
本文利用相对论有效原子实(RECP)和密度泛函(B3LYP)的方法对Sc原子采用SVP基组,对H原子采用6-311++G基组,对ScH_2分子的结构进行了优化,得到了它的平衡几何构型和谐振频率.使用多体项展式理论方法,导出了基态ScH_2分子的分析势能函数,该势能表面准确地再现了ScH_2(C_(2v))平衡结构,然后根据势能函数等值图讨论了反应势能面的静态特征,并利用杂化轨道理论解释了ScH_2分子的结构. 相似文献