首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider the separable nonlinear and strictly convex single-commodity network flow problem (SSCNFP). We develop a computational scheme for generating a primal feasible solution from any Lagrangian dual vector; this is referred to as “early primal recovery”. It is motivated by the desire to obtain a primal feasible vector before convergence of a Lagrangian scheme; such a vector is not available from a Lagrangian dual vector unless it is optimal. The scheme is constructed such that if we apply it from a sequence of Lagrangian dual vectors that converge to an optimal one, then the resulting primal (feasible) vectors converge to the unique optimal primal flow vector. It is therefore also a convergent Lagrangian heuristic, akin to those primarily devised within the field of combinatorial optimization but with the contrasting and striking advantage that it is guaranteed to yield a primal optimal solution in the limit. Thereby we also gain access to a new stopping criterion for any Lagrangian dual algorithm for the problem, which is of interest in particular if the SSCNFP arises as a subproblem in a more complex model. We construct instances of convergent Lagrangian heuristics that are based on graph searches within the residual graph, and therefore are efficiently implementable; in particular we consider two shortest path based heuristics that are based on the optimality conditions of the original problem. Numerical experiments report on the relative efficiency and accuracy of the various schemes.  相似文献   

2.
In a multiperiod dynamic network flow problem, we model uncertain arc capacities using scenario aggregation. This model is so large that it may be difficult to obtain optimal integer or even continuous solutions. We develop a Lagrangian decomposition method based on the structure recently introduced in G.D. Glockner and G.L. Nemhauser, Operations Research, vol. 48, pp. 233–242, 2000. Our algorithm produces a near-optimal primal integral solution and an optimum solution to the Lagrangian dual. The dual is initialized using marginal values from a primal heuristic. Then, primal and dual solutions are improved in alternation. The algorithm greatly reduces computation time and memory use for real-world instances derived from an air traffic control model.  相似文献   

3.
Facility location problems are often encountered in many areas such as distribution, transportation and telecommunication. We describe a new solution approach for the capacitated facility location problem in which each customer is served by a single facility. An important class of heuristic solution methods for these problems are Lagrangian heuristics which have been shown to produce high quality solutions and at the same time be quite robust. A primal heuristic, based on a repeated matching algorithm which essentially solves a series of matching problems until certain convergence criteria are satisfied, is incorporated into the Lagrangian heuristic. Finally, a branch-and-bound method, based on the Lagrangian heuristic is developed, and compared computationally to the commercial code CPLEX. The computational results indicate that the proposed method is very efficient.  相似文献   

4.
We consider in this paper the Lagrangian dual method for solving general integer programming. New properties of Lagrangian duality are derived by a means of perturbation analysis. In particular, a necessary and sufficient condition for a primal optimal solution to be generated by the Lagrangian relaxation is obtained. The solution properties of Lagrangian relaxation problem are studied systematically. To overcome the difficulties caused by duality gap between the primal problem and the dual problem, we introduce an equivalent reformulation for the primal problem via applying a pth power to the constraints. We prove that this reformulation possesses an asymptotic strong duality property. Primal feasibility and primal optimality of the Lagrangian relaxation problems can be achieved in this reformulation when the parameter p is larger than a threshold value, thus ensuring the existence of an optimal primal-dual pair. We further show that duality gap for this partial pth power reformulation is a strictly decreasing function of p in the case of a single constraint. Dedicated to Professor Alex Rubinov on the occasion of his 65th birthday. Research supported by the Research Grants Council of Hong Kong under Grant CUHK 4214/01E, and the National Natural Science Foundation of China under Grants 79970107 and 10571116.  相似文献   

5.
We apply a modified subgradient algorithm (MSG) for solving the dual of a nonlinear and nonconvex optimization problem. The dual scheme we consider uses the sharp augmented Lagrangian. A desirable feature of this method is primal convergence, which means that every accumulation point of a primal sequence (which is automatically generated during the process), is a primal solution. This feature is not true in general for available variants of MSG. We propose here two new variants of MSG which enjoy both primal and dual convergence, as long as the dual optimal set is nonempty. These variants have a very simple choice for the stepsizes. Moreover, we also establish primal convergence when the dual optimal set is empty. Finally, our second variant of MSG converges in a finite number of steps.  相似文献   

6.
We propose two new Lagrangian dual problems for chance-constrained stochastic programs based on relaxing nonanticipativity constraints. We compare the strength of the proposed dual bounds and demonstrate that they are superior to the bound obtained from the continuous relaxation of a standard mixed-integer programming (MIP) formulation. For a given dual solution, the associated Lagrangian relaxation bounds can be calculated by solving a set of single scenario subproblems and then solving a single knapsack problem. We also derive two new primal MIP formulations and demonstrate that for chance-constrained linear programs, the continuous relaxations of these formulations yield bounds equal to the proposed dual bounds. We propose a new heuristic method and two new exact algorithms based on these duals and formulations. The first exact algorithm applies to chance-constrained binary programs, and uses either of the proposed dual bounds in concert with cuts that eliminate solutions found by the subproblems. The second exact method is a branch-and-cut algorithm for solving either of the primal formulations. Our computational results indicate that the proposed dual bounds and heuristic solutions can be obtained efficiently, and the gaps between the best dual bounds and the heuristic solutions are small.  相似文献   

7.
Real-time vehicle rerouting problems with time windows   总被引:2,自引:0,他引:2  
This paper introduces and studies real-time vehicle rerouting problems with time windows, applicable to delivery and/or pickup services that undergo service disruptions due to vehicle breakdowns. In such problems, one or more vehicles need to be rerouted, in real-time, to perform uninitiated services, with the objective to minimize a weighted sum of operating, service cancellation and route disruption costs. A Lagrangian relaxation based-heuristic is developed, which includes an insertion based-algorithm to obtain a feasible solution for the primal problem. A dynamic programming based algorithm solves heuristically the shortest path problems with resource constraints that result from the Lagrangian relaxation. Computational experiments show that the developed Lagrangian heuristic performs very well.  相似文献   

8.
Although the Lagrangian method is a powerful dual search approach in integer programming, it often fails to identify an optimal solution of the primal problem. The p-th power Lagrangian method developed in this paper offers a success guarantee for the dual search in generating an optimal solution of the primal integer programming problem in an equivalent setting via two key transformations. One other prominent feature of the p-th power Lagrangian method is that the dual search only involves a one-dimensional search within [0,1]. Some potential applications of the method as well as the issue of its implementation are discussed.  相似文献   

9.
Consider the utilization of a Lagrangian dual method which is convergent for consistent convex optimization problems. When it is used to solve an infeasible optimization problem, its inconsistency will then manifest itself through the divergence of the sequence of dual iterates. Will then the sequence of primal subproblem solutions still yield relevant information regarding the primal program? We answer this question in the affirmative for a convex program and an associated subgradient algorithm for its Lagrange dual. We show that the primal–dual pair of programs corresponding to an associated homogeneous dual function is in turn associated with a saddle-point problem, in which—in the inconsistent case—the primal part amounts to finding a solution in the primal space such that the Euclidean norm of the infeasibility in the relaxed constraints is minimized; the dual part amounts to identifying a feasible steepest ascent direction for the Lagrangian dual function. We present convergence results for a conditional \(\varepsilon \)-subgradient optimization algorithm applied to the Lagrangian dual problem, and the construction of an ergodic sequence of primal subproblem solutions; this composite algorithm yields convergence of the primal–dual sequence to the set of saddle-points of the associated homogeneous Lagrangian function; for linear programs, convergence to the subset in which the primal objective is at minimum is also achieved.  相似文献   

10.
In this paper, we design a new variable target value procedure, the trust region target value (TRTV) method, for optimizing nondifferentiable Lagrangian dual formulations of large-scale, ill-conditioned linear programming problems. Such problems typically arise in the context of Lagrangian relaxation approaches and branch-and-bound/cut algorithms for solving linear mixed-integer programs. Subgradient optimization strategies are well-suited for this purpose and are popularly used, particularly in Lagrangian relaxation contexts, because of their simplicity in computation and mild memory requirements. However, they lack robustness and can often stall while yet remote from optimality. With this motivation, we design our proposed TRTV method to retain simplicity in computations, be theoretically convergent, as well as yield an effective and robust performance in practice. Furthermore, we augment this approach with dual refinement and primal recovery procedures based on outer-linearization and trust region strategies to further improve the accuracy of the resulting solutions and to derive primal solutions as well. Our computational study reveals a highly competitive performance of the proposed TRTV algorithm among several implemented nondifferentiable optimization procedures. Moreover, the dual refinement and primal recovery procedures help further reduce the optimality gap and promote attaining a relatively greater degree of primal feasibility as compared with several alternative ergodic primal recovery schemes. Also, the proposed method displays significantly lesser computational requirement than that of a commercial linear programming solver CPLEX.This research has been supported by the National Science Foundation under Grant Number DMI-0094462.  相似文献   

11.
Dual fractional cutting plane algorithms, in which cutting planes are used to iteratively tighten a linear relaxation of an integer program, are well-known and form the basis of the highly successful branch-and-cut method. It is rather less well-known that various primal cutting plane algorithms were developed in the 1960s, for example by Young. In a primal algorithm, the main role of the cutting planes is to enable a feasible solution to the original problem to be improved. Research on these algorithms has been almost non-existent.  In this paper we argue for a re-examination of these primal methods. We describe a new primal algorithm for pure 0-1 problems based on strong valid inequalities and give some encouraging computational results. Possible extensions to the case of general mixed-integer programs are also discussed.  相似文献   

12.
The paper presents a tight Lagrangian bound and an efficient dual heuristic for the flow interception problem. The proposed Lagrangian relaxation decomposes the problem into two subproblems that are easy to solve. Information from one of the subproblems is used within a dual heuristic to construct feasible solutions and is used to generate valid cuts that strengthen the relaxation. Both the heuristic and the relaxation are integrated into a cutting plane method where the Lagrangian bound is calculated using a subgradient algorithm. In the course of the algorithm, a valid cut is added and integrated efficiently in the second subproblem and is updated whenever the heuristic solution improves. The algorithm is tested on randomly generated test problems with up to 500 vertices, 12,483 paths, and 43 facilities. The algorithm finds a proven optimal solution in more than 75% of the cases, while the feasible solution is on average within 0.06% from the upper bound.  相似文献   

13.
Interior-point methods have been shown to be very efficient for large-scale nonlinear programming. The combination with penalty methods increases their robustness due to the regularization of the constraints caused by the penalty term. In this paper a primal–dual penalty-interior-point algorithm is proposed, that is based on an augmented Lagrangian approach with an \(\ell 2\)-exact penalty function. Global convergence is maintained by a combination of a merit function and a filter approach. Unlike the majority of filter methods, no separate feasibility restoration phase is required. The algorithm has been implemented within the solver WORHP to study different penalty and line search options and to compare its numerical performance to two other state-of-the-art nonlinear programming algorithms, the interior-point method IPOPT and the sequential quadratic programming method of WORHP.  相似文献   

14.
In this paper, we develop a Lagrangian decomposition based heuristic method for general quadratic binary programs (QBPs) with linear constraints. We extend the idea of Lagrangian decomposition by Chardaire and Sutter (Manag Sci 41(4):704–712, 1995) and Billionnet and Soutif (Eur J Oper Res 157(3):565–575, 2004a, Inf J Comput 16(2):188–197, 2004b) in which the quadratic objective is converted to a bilinear function by introducing auxiliary variables to duplicate the original complicating variables in the problem. Instead of using linear constraints to assure the equity between the two types of decision variables, we introduce generalized quadratic constraints and relax them with Lagrangian multipliers. Instead of computing an upper bound for a maximization problem, we focus on lower bounding with Lagrangian decomposition based heuristic. We take advantage of the decomposability presented in the Lagrangian subproblems to speed up the heuristic and identify one feasible solution at each iteration of the subgradient optimization procedure. With numerical studies on several classes of representative QBPs, we investigate the sensitivity of lower-bounding performance on parameters of the additional quadratic constraints. We also demonstrate the potentially improved quality of preprocessing in comparison with the use of a QBP solver.  相似文献   

15.
We present two heuristic methods for solving the Discrete Ordered Median Problem (DOMP), for which no such approaches have been developed so far. The DOMP generalizes classical discrete facility location problems, such as the p-median and p-center. The first procedure proposed in this paper is based on a genetic algorithm developed by Moreno Vega (1996) for p-median and p-center problems. Additionally, a second heuristic approach based on the Variable Neighborhood Search metaheuristic (VNS) proposed by Hansen and Mladenović (1997) for the p-median problem is described. An extensive numerical study is presented to show the efficiency of both heuristics and compare them.  相似文献   

16.
Nonlinearly constrained optimization problems can be solved by minimizing a sequence of simpler unconstrained or linearly constrained subproblems. In this paper, we consider the formulation of subproblems in which the objective function is a generalization of the Hestenes-Powell augmented Lagrangian function. The main feature of the generalized function is that it is minimized with respect to both the primal and the dual variables simultaneously. The benefits of this approach include: (i) the ability to control the quality of the dual variables during the solution of the subproblem; (ii) the availability of improved dual estimates on early termination of the subproblem; and (iii) the ability to regularize the subproblem by imposing explicit bounds on the dual variables. We propose two primal-dual variants of conventional primal methods: a primal-dual bound constrained Lagrangian (pdBCL) method and a primal-dual 1 linearly constrained Lagrangian (pd 1LCL) method. Finally, a new sequential quadratic programming (pdSQP) method is proposed that uses the primal-dual augmented Lagrangian as a merit function.  相似文献   

17.
Given an undirected graph G with penalties associated with its vertices and costs associated with its edges, a Prize Collecting Steiner (PCS) tree is either an isolated vertex of G or else any tree of G, be it spanning or not. The weight of a PCS tree equals the sum of the costs for its edges plus the sum of the penalties for the vertices of G not spanned by the PCS tree. Accordingly, the Prize Collecting Steiner Problem in Graphs (PCSPG) is to find a PCS tree with the lowest weight. In this paper, after reformulating and re-interpreting a given PCSPG formulation, we use a Lagrangian Non Delayed Relax and Cut (NDRC) algorithm to generate primal and dual bounds to the problem. The algorithm is capable of adequately dealing with the exponentially many candidate inequalities to dualize. It incorporates ingredients such as a new PCSPG reduction test, an effective Lagrangian heuristic and a modification in the NDRC framework that allows duality gaps to be further reduced. The Lagrangian heuristic suggested here dominates their PCSPG counterparts in the literature. The NDRC PCSPG lower bounds, most of the time, nearly matched the corresponding Linear Programming relaxation bounds.  相似文献   

18.
In this paper we describe a cutting plane algorithm for the Steiner tree packing problem. We use our algorithm to solve some switchbox routing problems of VLSI-design and report on our computational experience. This includes a brief discussion of separation algorithms, a new LP-based primal heuristic and implementation details. The paper is based on the polyhedral theory for the Steiner tree packing polyhedron developed in our companion paper (this issue) and meant to turn this theory into an algorithmic tool for the solution of practical problems.  相似文献   

19.
In this paper,the Uzawa iteration algorithm is applied to the Stokes problem with nonlinear slip boundary conditions whose variational formulation is the variational inequality of the second kind.Firstly, the multiplier in a convex set is introduced such that the variational inequality is equivalent to the variational identity.Moreover,the solution of the variational identity satisfies the saddle-point problem of the Lagrangian functional ?.Subsequently,the Uzawa algorithm is proposed to solve the solution of the saddle-point problem. We show the convergence of the algorithm and obtain the convergence rate.Finally,we give the numerical results to verify the feasibility of the Uzawa algorithm.  相似文献   

20.
Yi Zhang  Liwei Zhang  Yue Wu 《TOP》2014,22(1):45-79
The focus of this paper is on studying an inverse second-order cone quadratic programming problem, in which the parameters in the objective function need to be adjusted as little as possible so that a known feasible solution becomes the optimal one. We formulate this problem as a minimization problem with cone constraints, and its dual, which has fewer variables than the original one, is a semismoothly differentiable (SC 1) convex programming problem with both a linear inequality constraint and a linear second-order cone constraint. We demonstrate the global convergence of the augmented Lagrangian method with an exact solution to the subproblem and prove that the convergence rate of primal iterates, generated by the augmented Lagrangian method, is proportional to 1/r, and the rate of multiplier iterates is proportional to $1/\sqrt{r}$ , where r is the penalty parameter in the augmented Lagrangian. Furthermore, a semismooth Newton method with Armijo line search is constructed to solve the subproblems in the augmented Lagrangian approach. Finally, numerical results are reported to show the effectiveness of the augmented Lagrangian method with both an exact solution and an inexact solution to the subproblem for solving the inverse second-order cone quadratic programming problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号