首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we present the elementary principles of nonlinear quantum mechanics (NLQM), which is based on some problems in quantum mechanics. We investigate in detail the motion laws and some main properties of microscopic particles in nonlinear quantum systems using these elementary principles. Concretely speaking, we study in this paper the wave-particle duality of the solution of the nonlinear Schr?dinger equation, the stability of microscopic particles described by NLQM, invariances and conservation laws of motion of particles, the Hamiltonian principle of particle motion and corresponding Lagrangian and Hamilton equations, the classical rule of microscopic particle motion, the mechanism and rules of particle collision, the features of reflection and the transmission of particles at interfaces, and the uncertainty relation of particle motion as well as the eigenvalue and eigenequations of particles, and so on. We obtained the invariance and conservation laws of mass, energy and momentum and angular momentum for the microscopic particles, which are also some elementary and universal laws of matter in the NLQM and give further the methods and ways of solving the above questions. We also find that the laws of motion of microscopic particles in such a case are completely different from that in the linear quantum mechanics (LQM). They have a lot of new properties; for example, the particles possess the real wave-corpuscle duality, obey the classical rule of motion and conservation laws of energy, momentum and mass, satisfy minimum uncertainty relation, can be localized due to the nonlinear interaction, and its position and momentum can also be determined, etc. From these studies, we see clearly that rules and features of microscopic particle motion in NLQM is different from that in LQM. Therefore, the NLQM is a new physical theory, and a necessary result of the development of quantum mechanics and has a correct representation of describing microscopic particles in nonlinear systems, which can solve problems disputed for about a century by scientists in the LQM field. Hence, the NLQM built is very necessary and correct. The NLQM established can promote the development of physics and can enhance and raise the knowledge and recognition levels to the essences of microscopic matter. We can predict that nonlinear quantum mechanics has extensive applications in physics, chemistry, biology and polymers, etc.   相似文献   

2.
In this paper, we present the elementary principles of nonlinear quantum mechanics (NLQM), which is based on some problems in quantum mechanics. We investigate in detail the motion laws and some main properties of microscopic particles in nonlinear quantum systems using these elementary principles. Concretely speaking, we study in this paper the wave-particle duality of the solution of the nonlinear Schrödinger equation, the stability of microscopic particles described by NLQM, invariances and conservation laws of motion of particles, the Hamiltonian principle of particle motion and corresponding Lagrangian and Hamilton equations, the classical rule of microscopic particle motion, the mechanism and rules of particle collision, the features of reflection and the transmission of particles at interfaces, and the uncertainty relation of particle motion as well as the eigenvalue and eigenequations of particles, and so on. We obtained the invariance and conservation laws of mass, energy and momentum and angular momentum for the microscopic particles, which are also some elementary and universal laws of matter in the NLQM and give further the methods and ways of solving the above questions. We also find that the laws of motion of microscopic particles in such a case are completely different from that in the linear quantum mechanics (LQM). They have a lot of new properties; for example, the particles possess the real wave-corpuscle duality, obey the classical rule of motion and conservation laws of energy,momentum and mass, satisfy minimum uncertainty relation, can be localized due to the nonlinear interaction, and its position and momentum can also be determined, etc. From these studies, we see clearly that rules and features of microscopic particle motion in NLQM is different from that in LQM. Therefore, the NLQM is a new physical theory, and a necessary result of the development of quantum mechanics and has a correct representation of describing microscopic particles in nonlinear systems, which can solve problems disputed for about a century by scientists in the LQM field. Hence, the NLQM built is very necessary and correct. The NLQM established can promote the development of physics and can enhance and raise the knowledge and recognition levels to the essences of microscopic matter. We can predict that nonlinear quantum mechanics has extensive applications in physics, chemistry, biology and polymers, etc.  相似文献   

3.
4.
The linear Schrödinger equation is generalized into non-linear equation based on the Gauss' principle of least squares. The weight function is assigned in such a way that it might be interpreted as occupation number density of hidden particles that obey the Fermi–Dirac stastistics. It is shown that the motion of a free particle, according to the so generalized non-linear equation, is described by a well behaved nondeforming wave packet moving with a constant velocity, in contrast to the always deforming wave packet according to the linear Schrödinger equation.  相似文献   

5.
In this paper, a Hirota method is developed for applying to the nonlinear Schrödinger equation with an arbitrary time-dependent linear potential which denotes the dynamics of soliton solutions in quasi-one-dimensional Bose-Einstein condensation. The nonlinear Schrödinger equation is decoupled to two equations carefully. With a reasonable assumption the one- and two-soliton solutions are constructed analytically in the presence of an arbitrary time-dependent linear potential.  相似文献   

6.
Several theories for weakly damped free-surface flows have been formulated. In this Letter we use the linear approximation to the Navier-Stokes equations to derive a new set of equations for potential flow which include dissipation due to viscosity. A viscous correction is added not only to the irrotational pressure (Bernoulli's equation), but also to the kinematic boundary condition. The nonlinear Schrödinger (NLS) equation that one can derive from the new set of equations to describe the modulations of weakly nonlinear, weakly damped deep-water gravity waves turns out to be the classical damped version of the NLS equation that has been used by many authors without rigorous justification.  相似文献   

7.
The special and general relativity theories are used to demonstrate that the velocity of an unradiative particle in a Schwarzschild metric background, and in an electrostatic field, is the group velocity of a wave that we call a particle wave, which is a monochromatic solution of a standard equation of wave motion and possesses the following properties. It generalizes the de Broglie wave. The rays of a particle wave are the possible particle trajectories, and the motion equation of a particle can be obtained from the ray equation. The standing particle wave equation generalizes the Schrödinger equation of wave amplitudes. The particle wave motion equation generalizes the Klein–Gordon equation; this result enables us to analyze the essence of the particle wave frequency. The equation of the eikonal of a particle wave generalizes the Hamilton–Jacobi equation; this result enables us to deduce the general expression for the linear momentum. The Heisenberg uncertainty relation expresses the diffraction of the particle wave, and the uncertainty relation connecting the particle instant of presence and energy results from the fact that the group velocity of the particle wave is the particle velocity. A single classical particle may be considered as constituted of geometrical particle wave; reciprocally, a geometrical particle wave may be considered as constituted of classical particles. The expression for a particle wave and the motion equation of the particle wave remain valid when the particle mass is zero. In that case, the particle is a photon, the particle wave is a component a classical electromagnetic wave that is embedded in a Schwarzschild metric background, and the motion equation of the wave particle is the motion equation of an electromagnetic wave in a Schwarzschild metric background. It follows that a particle wave possesses the same physical reality as a classical electromagnetic wave. This last result and the fact that the particle velocity is the group velocity of its wave are in accordance with the opinions of de Broglie and of Schrödinger. We extend these results to the particle subjected to any static field of forces in any gravitational metric background. Therefore we have achieved a synthesis of undulatory mechanics, classical electromagnetism, and gravitation for the case where the field of forces and the gravitational metric background are static, and this synthesis is based only on special and general relativity.  相似文献   

8.
An algorithm is proposed for studying the symmetry properties of equations used in theoretical and mathematical physics. The application of this algorithm to the free Schrödinger equation permits one to establish that, in addition to the known Galilei symmetry, the free Schrödinger equation possesses also relativistic symmetry in some generalized sense. This property of the free Schrödinger equation provides an extension of the equation into the relativistic domain of the free particle motion under study.  相似文献   

9.
The dynamics of nonlinear pulse propagation in an average dispersion-managed soliton system is governed by a constant coefficient nonlinear Schrödinger (NLS) equation. For a special set of parameters the constant coefficient NLS equation is completely integrable. The same constant coefficient NLS equation is also applicable to optical fiber systems with phase modulation or pulse compression. We also investigate MI arising in the cubic-quintic nonlinear Schrödinger equation for ultrashort pulse propagation. Within this framework, we derive ordinary differential equations (ODE’s) for the time evolution of the amplitude and phase of modulation perturbations. Analyzing the ensuing ODE’s, we derive the classical modulational instability criterion and identify it numerically. We show that the quintic nonlinearity can be essential for the stability of solutions. The evolutions of modulational instability are numerically investigated and the effects of the quintic nonlinearity on the evolutions are examined. Numerical simulations demonstrate the validity of the analytical predictions.  相似文献   

10.
We analyze the extension of the well known relation between Brownian motion and the Schrödinger equation to the family of the Lévy processes. We consider a Lévy-Schrödinger equation where the usual kinetic energy operator-the Laplacian-is generalized by means of a selfadjoint, pseudodifferential operator whose symbol is the logarithmic characteristic of an infinitely divisible law. The Lévy-Khintchin formula shows then how to write down this operator in an integro-differential form. When the underlying Lévy process is stable we recover as a particular case the fractional Schrödinger equation. A few examples are finally given and we find that there are physically relevant models-such as a form of the relativistic Schrödinger equation-that are in the domain of the non stable Lévy-Schrödinger equations.  相似文献   

11.
M.M. Hassan 《Physica A》2008,387(11):2433-2442
New exact solutions for the higher-order nonlinear Schrödinger equation and coupled higher-order nonlinear Schrödinger equations are obtained by using the generalized Jacobi elliptic function method. Solutions in the limiting cases are also studied.  相似文献   

12.
A Darboux transformation of the generalized derivative nonlinear Schrodinger equation is derived. As an application, some new periodic wave solutions of the generalized derivative nonlinear Schrodinger equation are explicitly given.  相似文献   

13.
Chi-Feng Chen  Sien Chi 《Optik》2006,117(10):489-491
The wave equation of TM polarized subwavelength beam propagations in a nonlinear planar waveguide is derived beyond the paraxial approximation. This modified equation contains more higher-order linear and nonlinear terms than the nonlinear Schrödinger equation. The propagation of fundamental subwavelength spatial solitons is numerically studied. It is shown that the effect of the higher nonlinear terms is significant. That is, for the propagation of narrower beam the modified nonlinear Schrödinger equation is more suitable than the nonlinear Schrödinger equation.  相似文献   

14.
The Schrödinger equation for a point particle in a quartic potential and a nonlinear Schrödinger equation are solved by the decomposition method yielding convergent series for the solutions which converge quite rapidly in physical problems involving bounded inputs and analytic functions. Several examples are given to demonstrate use of the method.  相似文献   

15.
We find exact solutions of the two- and three-dimensional nonlinear Schrödinger equation with a supporting potential. We focus in the case where the diffraction operator is of the hyperbolic type and both the potential and the solution have the form of an X-wave. Following similar arguments, several additional families of exact solutions can also can be found irrespectively of the type of the diffraction operator (hyperbolic or elliptic) or the dimensionality of the problem. In particular we present two such examples: The one-dimensional nonlinear Schrödinger equation with a stationary and a “breathing” potential and the two-dimensional nonlinear Schrödinger with a Bessel potential.  相似文献   

16.
The uncertainty relationship between position and momentum of the microscopic particles is calculated by nonlinear quantum theory in which the states of the particles are described by a nonlinear Schrüdinger equation. The results show that the uncertainty relation differs from that in the quantum mechanics and has a minimum value in this case. This means that the position and momentum of the particles could be determined simultaneously to a certain degree, which could be caused by the wave–corpuscle duality of the microscopic particles described by the nonlinear Schrüdinger equation.  相似文献   

17.
Li Li  Aihan Yin 《Optik》2011,122(13):1195-1200
Based on the computation approaches of numerical analysis in electromagnetic, the nonlinear pulse propagation in optical fiber is investigated in this paper. The transforming rule of the shape and spectrum of Gauss pulse are also researched in chirped and non-chirped scenarios from the nonlinear Schrödinger equation (NLSE). Analyzing the transient wave behavior in time domain and frequency domain respectively, the compression effect of chirp is also presented at different propagation distance. Then by the nonlinear Schrödinger equation, we discuss a specific solution in the quasi soliton without distortion, which has the stable propagation properly, and do the numerical simulation in soliton wave. Finally, by selecting proper fiber structure parameters and adjusting the width in soliton pulse, the soliton communication system can be optimized.  相似文献   

18.
We prove global existence and optimal decay estimates for classical solutions with small initial data for nonlinear nonlocal Schrödinger equations. The Laplacian in the Schrödinger equation can be replaced by an operator corresponding to a non-degenerate quadratic form of arbitrary signature. In particular, the Davey-Stewartson system is included in the the class of equations we discuss.Partially supported by NSF grant DMS-860-2031. Sloan Research Fellow  相似文献   

19.
马正义  马松华  杨毅 《物理学报》2012,61(19):190508-190508
非线性Schrödinger方程是物理学中具有广泛应用的非线性模型之一. 本文采用相似变换, 将具有色散系数的(2+1)维非线性Schrödinger方程简化成熟知的Schrödinger方程, 进而得到原方程的有理解和一些空间孤子.  相似文献   

20.
By using covariance properties of an extended Schrödinger formalism, exact soliton-like solutions of the nonlinear Schrödinger equation in time-dependent inhomogeneous media (parabolic density profiles) are constructed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号