首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Green phosphor compositions MgxSr1−xAl2O4:Eu, Nd (with x=0.05-0.25) were prepared by solid state reaction method. The effect of Mg substitution on photoluminescence characteristics was investigated. The photoluminescence show intense green emission for MgSrAl2O4:Eu2+, Nd3+ with long persistence. This green emission corresponds to transitions from 4f65d1 to 4f7 of Eu2+ ion. Comparative analysis of the excitation and emission spectra were used to evaluate the crystal field splitting of the 5d states of Eu2+ and the parameters of electron-vibrational interaction, such as Huang-Rhys factor, effective phonon energy, and zero-phonon line position.  相似文献   

2.
Phosphor material BaAl2O4:Eu2+, Dy3+ with varying compositions of Sr substitution were prepared by the solid-state synthesis method. The phosphor compositions were characterized for their phase and crystallinity by XRD, SEM and TEM. Photoluminescence (PL) properties were investigated measuring PL and decay time for varying Ba/Sr compositions. The PL results show the blue shift in the luminescence properties in Sr substituted BaAl2O4:Eu2+, Dy3+ compared to parent BaAl2O4:Eu2+, Dy3+. It is probably due to the influence of 5d electron states of Eu2+ in the crystal field because of atomic size variation causing crystal defects. Dy3+ ion doping in the phosphor generates deep traps, which results in long afterglow phosphorescence.  相似文献   

3.
CaAl2O4:Eu2+ co-doped with varying concentrations of Er3+ was prepared by solid-state reaction method. Prepared materials with 1 mol% Eu2+ and 2-10 mol% of Er3+ were investigated for their photoluminescence properties. Phase, morphology and crystalline structure were investigated by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Broad band UV-excited luminescence was observed for CaAl2O4:Eu2+, Er3+ in the blue region (λmax=440 nm) due to transitions from 4f65d1 to the 4f7 configuration of the Eu2+ ion. The Er3+ ion co-doping generates deep traps, which results in longer decay time for phosphorescence.  相似文献   

4.
The photoluminescence and low-voltage cathodoluminescence characteristics of BaTi4O9:Pr3+ were investigated. The excitation band of intervalence charge transfer (IVCT) of BaTi4O9:Pr3+ emerged distinctly at 330 nm. The resultant emissions appeared at 606-643 nm corresponding to the 1D23H4 transition. In BaTi4O9:Pr3+, the emission of 3P03H4 transition at 490 nm was not observed. The results were in a pure red color emission.  相似文献   

5.
In order to prepare fluorescent material for UV-LED used as illumination light source, two series of Eu2+ doped (1 mol%) alkaline earth aluminate phosphors CaxSr1−xAl2O4 and BaxSr1−xAl2O4 were prepared. The crystal structure, relative quantum efficiency(Qr), peak wavelength(λp), color tuning and chromaticity were investigated by XRD patterns and photoluminescence (PL) on samples prepared by solid solution system (s series) and powder mixing system (m series) respectively. For the s series, the synthesized CaxSr1−xAl2O4:Eu2+ powders show that the structure transforms from monoclinic to hexagonal at x?0.5, and λp increases from 442.3 to 529.7 nm with decreasing x. For the BaxSr1−xAl2O4:Eu2+ system, the structure transforms from monoclinic to hexagonal at x?0.3, and λp decreases from 520.5 to 502.2 nm continuously from x=0 to 1. The shift in λp could be explained by the crystal field effect, which is affected by different coulomb attractive forces due to the various fraction of alkaline earth cation in the host lattice. Different phosphor properties prepared by either solid solution or powder mixing methods were characterized by chromaticity measurements for both reflective and transmissive modes.  相似文献   

6.
The magnetic properties have been studied for the series of RNi5−xCux intermetallics with R=Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Lu; x  ?2.5. Compositional dependences of magnetic susceptibility for the Pauli paramagnets (R=Y, La, Ce, Lu) and the Curie temperature for ferromagnets (R=Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm) have maximum at x=0.2–0.4x=0.20.4 and 1, respectively. The substitution of Cu for Ni is accompanied by decreasing spontaneous magnetic moment and increasing coercive force of all ferromagnetic RNi5−xCux but GdNi5−xCux. These results are explained in the frame of band magnetism, random local crystal field, and domain wall pinning theories.  相似文献   

7.
Eu2+, Dy3+ co-doped Sr2MgSi2O7 phosphors with deficient, stoichiometric or excess amounts of silicon are prepared by solid-state reaction. XRD and SEM results indicate that all the samples studied are found to be free from impurities and samples with SiO2 excess possess better crystallinity and larger grain size. Photoluminescence reveals that the position of Eu2+ emission is not changed with various compositions. However, both photoluminescence intensity and afterglow properties are increased by an incorporation of excess SiO2 and are decreased by SiO2 deficiency. The thermoluminescence results show that the corresponding increase or decrease in afterglow is associated with trap density, but no change in trap depth. The underlying reason of photoluminescence and afterglow enhancement is discussed.  相似文献   

8.
Based on the pseudopotential scheme, the effect of nitrogen concentration on electronic properties of zinc-blende GaAs1−xNx alloys has been investigated for small amounts of N. The agreement between our calculated electronic band parameters and the available experimental data is generally reasonable. In agreement with recent experiment, we find that the incorporation of a few percent of N in the material of interest reduces substantially the fundamental band-gap energy and narrows the full valence band width. The electron and heavy hole effective masses are found to decrease rapidly when adding a concentration of nitrogen less than 0.005 in GaAs. This may increase the mobility of electrons and heavy holes providing new opportunities regarding the transport properties. The information derived from the present study shows that GaAs1−xNx (0?x?0.05) properties may have an important optoelectronic applications in infrared and mid-infrared spectral regions.  相似文献   

9.
The thermo-luminescence (TL) of rare earth ions RE3+ (RE=Ln, excluding Pm, Eu and Lu) co-doped phosphors CaGa2S4:Eu2+, RE3+ was studied between room temperature and 300 °C, and 3D thermo-luminescence of the phosphors were measured from room temperature to 400 °C. The basic material CaGa2S4:Eu2+, showed at least two bands in the TL glow curve. Changing the auxiliary activator RE3+ (rare earth ion), intensities and the positions of the TL glow curve peaks were affected significantly. For the phosphors with long afterglow, auxiliary activator such as Ce3+, Pr3+, Gd3+, Tb3+, Ho3+, or Y3+ created some new defects in these compounds at lower trap levels and enhanced their TL intensities. The Nd3+ or Er3+ auxiliary activator only enhanced TL intensities to a low extent, so these two phosphors have short persistent luminescence at room temperature. TL intensities of La3+, Sm3+, Tm3+ or Yb3+ co-doped phosphors were suppressed greatly and no afterglow was shown. The relationship between auxiliary activators and corresponding thermo-luminescence curves of phosphors CaGa2S4:Eu2+, RE3+ are discussed in detail. According to our results, suitable activation energy and enough high corresponding trap density are necessary for the phosphor with long afterglow.  相似文献   

10.
The magnetic and magnetoresistive properties of spinel-type Zn1−xCoxFe2O4 (x=0, 0.2 and 0.4) ferrites are extensively investigated in this study. A large negative magnetoresistance (MR) effect is observed in Zn1−xCoxFe2O4 ferrites of spinel structure. These materials are either ferrimagnetic or paramagnetic at room temperature, and show a spin-(cluster) glass transition at low temperatures, depending on the chemical compositions. The MR curves as a function of magnetic fields, MR(H), are parabolic at all temperatures for paramagnetic polycrystalline ZnFe2O4. The MR for ZnFe2O4 at 110 K in the presence of 9 T applied magnetic field is 30%. On the other hand, MR(H) are linear for x=0.2 and 0.4 ferrimagnetic Zn1−xCoxFe2O4 samples up to 9 T. The MR effect is independent of the sintering temperatures, and can be explained with the help of the spin-dependent scattering and the Yafet–Kittel angle of Zn1−xCoxFe2O4 mixed ferrites.  相似文献   

11.
A series of first principles calculations have been carried out to study structural, electronic properties of BaSxSe1−x alloys. We have used the local density as well as the generalized gradient approximations for the exchange-correlation potential. The structural properties of these materials, in particular the composition dependence to the lattice constant and bulk modulus, are found to be linear. It is also found linear relationship between theoretical band gaps and 1/a2 (where a is lattice constant).  相似文献   

12.
Newly synthesized reference MgLaLiSi2O7 and red luminescent Eu3+:MgLaLiSi2O7 powder phosphors have been successfully developed by a solid-state reaction method to analyze their emission and structural properties from the measurement of their XRD, SEM, FTIR and PL spectra. Emission spectra of Eu3+ powder phosphors have shown strong red emissions at 613 nm (5D07F2). These phosphors have also shown bright red emissions under a UV source. Based on the red emission performance, the Eu3+ concentration has been optimized to be at 0.3 mol%.  相似文献   

13.
Magnetic properties of the Ce2Fe17−xMnx, x=0–2, alloys in magnetic fields up to 40 T are reported. The compounds with x=0.5–1 are helical antiferromagnets and those with 1<x?2 are helical ferromagnets or helical antiferromagnets at low and high T, respectively. Mn ions in the system carry average magnetic moment of 3.0±0.2 μB that couple antiparallelly to the Fe moments. Easy-plane magnetic anisotropy in the Ce2Fe17−xMnx compounds weakens upon substitution of Mn for Fe. The absolute value of the first anisotropy constant in the Ce2Fe17−xMnx helical ferromagnets decreases slower with increasing temperature than that calculated from the third power of the spontaneous magnetization. Noticeable magnetic hysteresis in the Ce2Fe17−xMnx, x=0.5–2, helical magnets over the whole range of magnetic fields reflects mainly irreversible deformation of the helical magnetic structure during the magnetization of the compounds. A contribution from short-range order (SRO) magnetic clusters to the magnetic hysteresis of the helical magnets has been also estimated.  相似文献   

14.
The mixed-compound of Sr1−xCaxTiO3 has shown several compositional phase transformations. Photoluminescence and excitation spectra of the samples with different x and doped with 0.2% Pr3+ were investigated. Changes in the emission spectra were observed in different phases. The blue emission at 491 nm from 3P0 state was found quite strong in the tetragonal phase, and was thermally quenched in the orthorhombic phases. The intensity of the red luminescence from 1D2 increases with increasing content of calcium. The strongest red emission is obtained from CaTiO3:Pr3+. The results are discussed based on the configuration coordinate model and interaction of Pr with the charge transfer exciton state of the Ti complex.  相似文献   

15.
Photoluminescent phosphors CaGa2S4: Eu2+, RE3+ (RE3+ including all rare earth ions except for Sc3+, Pm3+, Eu3+ and Lu3+) were prepared by sintering at high temperature in a reductive atmosphere, and their luminescent properties were studied intensively. The influences of co-doping rare earth ions on their luminescent properties were also investigated. No remarkable differences were found from excitation spectra of co-doped phosphors CaGa2S4: Eu2+, RE3+ in contrast with that of phosphor CaGa2S4: Eu2+, but there were a few differences in emission spectra of Ce3+, Pr3+ or Ho3+ co-doped phosphors. Phosphors CaGa2S4: Eu2+, RE3+ (RE=Ce, Pr, Gd, Tb, Ho and Y) had persistent afterglow, and very short afterglow was shown for Nd3+ or Er3+ co-doped phosphors, but no long afterglow appeared when auxiliary activator was La3+, Sm3+, Dy3+, Tm3+ or Yb3+. Among the phosphors with long-lasting phosphorescence, in our experiments, CaGa2S4: Eu2+, Ho3+ had the longest and the highest brightness long yellow afterglow. Thermo-luminescence of all co-doped phosphors was measured to find the answer of different influences from different rare earth auxiliary activators.  相似文献   

16.
The photoluminescent (PL) emission and excitation behaviour of green-emitting CaAl2S4:Eu2+ powder phosphor is reported in detail. CaAl2S4:Eu2+ emission provides good CIE colour coordinates (x=0.141; y=0.721) for the green component in display applications. Powder with a dopant concentration of 8.5 mol% shows the highest luminescence efficiency. Temperature dependence of the radiative properties, such as luminescence intensity and decay time, was investigated. In particular, the Stokes shift, the mean phonon energy, the redshift, the energy of the f→d and d→f transition and the crystal field splitting of the CaAl2S4:Eu2+ emission were determined. The thermal quenching of the emission was examined.  相似文献   

17.
X.N. Sun 《Physics letters. A》2008,372(10):1687-1690
FexPd1−x films were epitaxially grown on Au(001). The structure changes from face-centered-cubic (fcc) to face-centered-tetragonal (fct) at x∼0.6, then to body-centered-cubic (bcc) at x∼0.85. Ferromagnetism shows up at 300 K when x is 0.06. The cubic magnetocrystalline anisotropy constant K1 switches from negative to positive as x increases to 0.34.  相似文献   

18.
The magnetic and transport properties in the perovskite Sr1−xLaxFe1−xMnxO3 have been explored. As x rises, the systemic ferromagnetism increases gradually and cluster-spin-glass state occurs in the low-temperature region. For 0.3?x?0.7, the ferromagnetic phase separation from the paramagnetic phase was observed from the results of electron-spin-resonance measurement. Although all samples show a semiconducting behavior, their transport properties are dominated by two different mechanisms, namely, the electronic transport of x?0.5 samples is realized by thermal activation but the variable-range hopping is applied in x?0.7 ones. The different transport mechanism can be understood from the Mn/Fe ions interaction.  相似文献   

19.
NiAlxFe2−xO4 and Ni1−yMnyAl0.2Fe1.8O4 ferrites were prepared by the conventional ceramic method and were characterized by X-ray diffraction, scanning electron microscopy, and magnetic measurements. The single spinel phase was confirmed for all prepared samples. A proper explanation of data is possible if the Al3+ ions are assumed to replace Fe3+ ions in the A and B sites simultaneously for NiAlxFe2−xO4 ferrites, and if the Mn2+ ions are assumed to replace Ni2+ ions in the B sites for Ni1−yMnyAl0.2Fe1.8O4 ferrites. Microstructural factors play an important role in the magnetic behavior of Ni1−yMnyAl0.2Fe1.8O4 ferrites with large Mn2+ content.  相似文献   

20.
We characterized the crystallization and luminescence of blue-emitting BaAl2S4 : Eu electroluminescent thin films, prepared using switching electron-beam evaporation with two targets. From the photoluminescence intensity and decay profile of the activated Eu2+ ions in the BaAl2S4 : Eu, we found that the optimum annealing conditions for preparing highly luminescent thin films are a temperature of around 900°C and an annealing time of 2 min. We analyzed the crystalline properties using cross-sectional transmission electron microscope images. Evaluation of the cathodoluminescence spectra in the cross-sections showed that the BaAl2S4 : Eu emitting layer was luminously inhomogeneous on the depth of the layer and that the main luminescent area was near the surface of the emitting layer. We discuss here the relationship between the crystalline and luminescent properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号